Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Hypertens ; 36(5): 1164-1177, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369849

RESUMO

OBJECTIVE: Energy metabolism shift from oxidative phosphorylation toward glycolysis in pulmonary artery smooth muscle cells (PASMCs) is suggested to be involved in their hyperproliferation in pulmonary arterial hypertension (PAH). Here, we studied the role of the deacetylase sirtuin1 (SIRT1) in energy metabolism regulation in PASMCs via various pathways including activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), master regulator of mitochondrial biogenesis. APPROACH AND RESULTS: Contents of PGC-1α and its downstream targets as well as markers of mitochondrial mass (voltage-dependent anion channel and citrate synthase) were diminished in human PAH PASMCs. These cells and platelet-derived growth factor-stimulated rat PASMCs demonstrated a shift in cellular acetylated/deacetylated state, as evidenced by the increase of the acetylated forms of SIRT1 targets: histone H1 and Forkhead box protein O1. Rat and human PASMC proliferation was potentiated by SIRT1 pharmacological inhibition or specific downregulation via short-interfering RNA. Moreover, after chronic hypoxia exposure, SIRT1 inducible knock out mice displayed a more intense vascular remodeling compared with their control littermates, which was associated with an increase in right ventricle pressure and hypertrophy. SIRT1 activator Stac-3 decreased the acetylation of histone H1 and Forkhead box protein O1 and strongly inhibited rat and human PASMC proliferation without affecting cell mortality. This effect was associated with the activation of mitochondrial biogenesis evidenced by higher expression of mitochondrial markers and downstream targets of PGC-1α. CONCLUSION: Altered acetylation/deacetylation balance as the result of SIRT1 inactivation is involved in the pathogenesis of PAH, and this enzyme could be a promising therapeutic target for PAH treatment.


Assuntos
Proliferação de Células , Metabolismo Energético , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/citologia , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Feminino , Proteína Forkhead Box O1 , Histonas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Remodelação Vascular , Canais de Ânion Dependentes de Voltagem/metabolismo
3.
Clin Sci (Lond) ; 131(9): 803-822, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424375

RESUMO

It is increasingly acknowledged that a sex and gender specificity affects the occurrence, development, and consequence of a plethora of pathologies. Mitochondria are considered as the powerhouse of the cell because they produce the majority of energy-rich phosphate bonds in the form of adenosine tri-phosphate (ATP) but they also participate in many other functions like steroid hormone synthesis, reactive oxygen species (ROS) production, ionic regulation, and cell death. Adequate cellular energy supply and survival depend on mitochondrial life cycle, a process involving mitochondrial biogenesis, dynamics, and quality control via mitophagy. It appears that mitochondria are the place of marked sexual dimorphism involving mainly oxidative capacities, calcium handling, and resistance to oxidative stress. In turn, sex hormones regulate mitochondrial function and biogenesis. Mutations in genes encoding mitochondrial proteins are the origin of serious mitochondrial genetic diseases. Mitochondrial dysfunction is also an important parameter for a large panel of pathologies including neuromuscular disorders, encephalopathies, cardiovascular diseases (CVDs), metabolic disorders, neuropathies, renal dysfunction etc. Many of these pathologies present sex/gender specificity. Here we review the sexual dimorphism of mitochondria from different tissues and how this dimorphism takes part in the sex specificity of important pathologies mainly CVDs and neurological disorders.


Assuntos
Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais , Apoptose , Feminino , Humanos , Masculino , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos
4.
Semin Cell Dev Biol ; 64: 213-223, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27531051

RESUMO

Because of their contractile activity and their high oxygen consumption and metabolic rate, skeletal muscles continually produce moderate levels of reactive oxygen and nitrogen species (ROS/RNS), which increase during exercise and are buffered by multiple antioxidant systems to maintain redox homeostasis. Imbalance between ROS/RNS production and elimination results in oxidative stress (OxS), which has been implicated in ageing and in numerous human diseases, including cancer, diabetes or age-related muscle loss (sarcopenia). The study of redox homeostasis in muscle was hindered by its lability, by the many factors influencing technical OxS measures and by ROS/RNS important roles in signaling pathways and adaptative responses to muscle contraction and effort, which make it difficult to define a threshold between physiological signaling and pathological conditions. In the last years, new tools have been developed that facilitate the study of these key mechanisms, and deregulation of redox homeostasis has emerged as a key pathogenic mechanism and potential therapeutic target in muscle conditions. This is in particular the case for early-onset myopathies, genetic muscle diseases which present from birth or early childhood with muscle weakness interfering with ambulation and often with cardiac or respiratory failure leading to premature death. Inherited defects of the reductase selenoprotein N in SEPN1-related myopathy leads to chronic OxS of monogenic origin as a primary disease pathomechanism. In myopathies associated with mutations of the genes encoding the calcium channel RyR1, the extracellular matrix protein collagen VI or the sarcolemmal protein dystrophin (Duchenne Muscular Dystrophy), OxS has been identified as a relevant secondary pathophysiological mechanism. OxS being drug-targetable, it represents an interesting therapeutic target for these incurable conditions, and following preclinical correction of the cell or animal model phenotype, the first clinical trials with the antioxidants N-acetylcysteine (SEPN1- and RYR1-related myopathies) or epigallocatechin-gallate (DMD) have been launched recently. In this review, we provide an overview of the mechanisms involved in redox regulation in skeletal muscle, the technical tools available to measure redox homeostasis in muscle cells, the bases of OxS as a primary or secondary pathomechanism in early-onset myopathies and the innovative clinical trials with antioxidants which are currently in progress for these so-far untreatable infantile muscle diseases. Progress in our knowledge of redox homeostasis defects in these rare muscle conditions may be useful as a model paradigm to understand and treat other conditions in which OxS is involved, including prevalent conditions with major socioeconomic impact such as insulin resistance, cachexia, obesity, sarcopenia or ageing.


Assuntos
Terapia de Alvo Molecular , Doenças Musculares/patologia , Doenças Musculares/terapia , Estresse Oxidativo , Animais , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/fisiopatologia , Oxirredução
6.
Circ Heart Fail ; 8(1): 98-108, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420486

RESUMO

BACKGROUND: Cardiovascular diseases are the major cause of mortality among both men and women with a lower incidence in women before menopause. The clinical use of doxorubicin, widely used as an antineoplastic agent, is markedly hampered by severe cardiotoxicity. Even if there is a significant sex difference in incidence of cardiovascular disease at the adult stage, it is not known whether a difference in doxorubicin-related cardiotoxicity between men and women also exists. The objective of this work was to explore the cardiac side effects of doxorubicin in adult rats and decipher whether signaling pathways involved in cardiac toxicity differ between sexes. METHODS AND RESULTS: After 7 weeks of doxorubicin (2 mg/kg per week), males developed major signs of cardiomyopathy with cardiac atrophy, reduced left ventricular ejection fraction and 50% mortality. In contrast, no female died and their left ventricular ejection fraction was only moderately affected. Surprisingly, neither global oxidation levels nor the antioxidant response nor the apoptosis signaling pathways were altered by doxorubicin. However, the level of total adenosine monophosphate-activated protein kinase was severely decreased only in males. Moreover, markers of mitochondrial biogenesis and cardiolipin content were strongly reduced only in males. To analyze the onset of the pathology, maximal oxygen consumption rate of left ventricular permeabilized fibers after 4 weeks of treatment was reduced only in doxorubicin-treated males. CONCLUSIONS: Altogether, these results clearly evidence sex differences in doxorubicin toxicity. Cardiac mitochondrial dysfunction and adenosine monophosphate-activated protein kinase seem as critical sites of sex differences in cardiotoxicity as evidenced by significant statistical interactions between sex and treatment effects.


Assuntos
Doxorrubicina/toxicidade , Metabolismo Energético/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Índice de Massa Corporal , Cardiotoxicidade , Modelos Animais de Doenças , Feminino , Seguimentos , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Ratos , Ratos Wistar , Fatores Sexuais
7.
Cardiovasc Res ; 102(3): 418-28, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24654233

RESUMO

AIMS: Oestrogen receptor alpha (ERα) and beta (ERß) are involved in the regulation of pathological myocardial hypertrophy (MH). We hypothesize that both ER are also involved in physiological MH. Therefore, we investigated the role of ER in exercise-induced physiological MH in loss-of-function models and studied potential mechanisms of action. METHODS AND RESULTS: We performed 1 and 8 weeks of voluntary cage wheel running (VCR) with male and female C57BL/6J wild-type (WT), ERα- and ERß-deleted mice. In line with other studies, female WT mice ran more than males (P ≤ 0.001). After 8 weeks of VCR, both sexes showed an increase in left ventricular mass (females: P ≤ 0.01 and males: P ≤ 0.05) with more pronounced MH in females (P < 0.05). As previously shown, female ERα-deleted mice run less than female WT mice (P ≤ 0.001). ERß-deleted mice showed similar running performance as WT mice (females vs. male: P ≤ 0.001), but did not develop MH. Only female WT mice showed an increase in phosphorylation of serine/threonine kinase (AKT), ERK1/2, p38-mitogen-activated protein kinase (MAPK), and ribosomal protein s6, as well as an increase in the expression of key regulators of mitochondrial function and mitochondrial respiratory chain proteins (complexes I, III, and V) after VCR. However, ERß deletion abolished all observed sex differences. Mitochondrial remodelling occurred in female WT-VCR mice, but not in female ERß-deleted mice. CONCLUSION: The sex-specific response of the heart to exercise is modulated by ERß. The greater increase in physiological MH in females is mediated by induction of AKT signalling, MAPK pathways, protein synthesis, and mitochondrial adaptation via ERß.


Assuntos
Cardiomegalia/etiologia , Receptor beta de Estrogênio/fisiologia , Condicionamento Físico Animal , Adaptação Fisiológica , Animais , Células Cultivadas , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Estrogênio/fisiologia , Caracteres Sexuais , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Presse Med ; 42(9 Pt 2): e352-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23972551

RESUMO

Anthracyclines, discovered 50 years ago, are antibiotics widely used as antineoplastic agents and are among the most successful anticancer therapies ever developed to treat a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, some anthracyclines, including doxorubicin, exhibit major signs of cardiotoxicity that may ultimately lead to heart failure (HF). Despite intensive research on doxorubicine-induced cardiotoxicity, the underlying mechanisms responsible for doxorubicin-induced cardiotoxicity have not been fully elucidated yet. Published literature so far has focused mostly on mitochondria dysfunction with consequent oxidative stress, Ca(2+) overload, and cardiomyocyte death as doxorubicin side effects, leading to heart dysfunction. This review focuses on the current understanding of the molecular mechanisms underlying doxorubicin-induced cardiomyocyte death (i.e.: cardiomyocyte death, mitochondria metabolism and bioenergetic alteration), but we will also point to new directions of possible mechanisms, suggesting potent prior or concomitant alterations of specific signaling pathways with molecular actors directly targeted by the anticancer drugs itself (i.e. calcium homeostasis or cAMP signaling cascade). The mechanisms of anticancer cardiac toxicity may be more complex than just mitochondria dysfunction. Partnership of both basic and clinical research is needed to promote new strategies in diagnosis, therapies with concomitant cardioprotection in order to achieve cancer treatment with acceptable cardiotoxicity along life span.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , AMP Cíclico/fisiologia , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transdução de Sinais/efeitos dos fármacos
9.
Circ Res ; 111(9): 1237-47, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23065346

RESUMO

Mitochondria are implicated in many important cellular functions covering the whole life cycle from mitochondrial biogenesis to cell death. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies (eg, cardiovascular diseases, cancer, and neurodegeneration). The permeability transition pore (PTP) is an unselective voltage-dependent mitochondrial channel. Despite the extensive use of electrophysiology, biochemistry, pharmacology, and genetic invalidation in mice, the molecular identity of PTP is still unknown. Nevertheless, PTP is central to mitochondrial vital functions and can play a lethal role in many pathophysiological conditions. This review recapitulates the current knowledge of the various modes of conductance of the PTP channel and discusses their implication in the physiological roles of PTP and their regulation. Based on its involvement in normal physiology and human pathology, a better understanding of this channel and its roles remains a major goal for basic scientists and clinicians.


Assuntos
Mitocôndrias Cardíacas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Coração/fisiologia , Coração/fisiopatologia , Homeostase/fisiologia , Humanos , Poro de Transição de Permeabilidade Mitocondrial
10.
EMBO J ; 31(7): 1679-91, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22327219

RESUMO

Inhibitor of apoptosis (IAP) proteins cIAP1, cIAP2, and XIAP (X-linked IAP) regulate apoptosis and cytokine receptor signalling, but their overlapping functions make it difficult to distinguish their individual roles. To do so, we deleted the genes for IAPs separately and in combination. While lack of any one of the IAPs produced no overt phenotype in mice, deletion of cIap1 with cIap2 or Xiap resulted in mid-embryonic lethality. In contrast, Xiap(-/-)cIap2(-/-) mice were viable. The death of cIap2(-/-)cIap1(-/-) double mutants was rescued to birth by deletion of tumour necrosis factor (TNF) receptor 1, but not TNFR2 genes. Remarkably, hemizygosity for receptor-interacting protein kinase 1 (Ripk1) allowed Xiap(-/-)cIap1(-/-) double mutants to survive past birth, and prolonged cIap2(-/-)cIap1(-/-) embryonic survival. Similarly, deletion of Ripk3 was able to rescue the mid-gestation defect of cIap2(-/-)cIap1(-/-) embryos, as these embryos survived to E15.5. cIAPs are therefore required during development to limit activity of RIP kinases in the TNF receptor 1 signalling pathway.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Feminino , Deleção de Genes , Proteínas Inibidoras de Apoptose/genética , Masculino , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
11.
PLoS One ; 7(1): e29719, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238643

RESUMO

Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions.


Assuntos
Proteínas de Choque Térmico HSP27/genética , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transfecção , Células Tumorais Cultivadas
12.
J Biol Chem ; 286(15): 13282-91, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21339290

RESUMO

RIPK1 is involved in signaling from TNF and TLR family receptors. After receptor ligation, RIPK1 not only modulates activation of both canonical and NIK-dependent NF-κB, but also regulates caspase-8 activation and cell death. Although overexpression of RIPK1 can cause caspase-8-dependent cell death, when RIPK1(-/-) cells are exposed to TNF and low doses of cycloheximide, they die more readily than wild-type cells, indicating RIPK1 has pro-survival as well as pro-apoptotic activities. To determine how RIPK1 promotes cell survival, we compared wild-type and RIPK1(-/-) cells treated with TNF. Although TRAF2 levels remained constant in TNF-treated wild-type cells, TNF stimulation of RIPK1(-/-) cells caused TRAF2 and cIAP1 to be rapidly degraded by the proteasome, which led to an increase in NIK levels. This resulted in processing of p100 NF-κB2 to p52, a decrease in levels of cFLIP(L), and activation of caspase-8, culminating in cell death. Therefore, the pro-survival effect of RIPK1 is mediated by stabilization of TRAF2 and cIAP1.


Assuntos
Caspase 8/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 8/genética , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cicloeximida/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Knockout , NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Inibidores da Síntese de Proteínas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator 2 Associado a Receptor de TNF/genética , Fator de Necrose Tumoral alfa/farmacologia , Quinase Induzida por NF-kappaB
14.
J Biol Chem ; 285(23): 17525-36, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20356846

RESUMO

Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-kappaB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-kappaB, however, delayed activation of NF-kappaB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-kappaB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose , Citocina TWEAK , Dimerização , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , NF-kappa B/metabolismo , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais
15.
PLoS One ; 5(1): e8620, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20062539

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Sobrevivência Celular/fisiologia , MAP Quinase Quinase Quinases/fisiologia , NF-kappa B/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Sequência de Bases , Caspase 8/metabolismo , Células Cultivadas , Primers do DNA , Fibroblastos/citologia , Camundongos , Camundongos Knockout , Transdução de Sinais
16.
J Cell Biol ; 187(7): 1037-54, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20038679

RESUMO

A role for cellular inhibitors of apoptosis (IAPs [cIAPs]) in preventing CD95 death has been suspected but not previously explained mechanistically. In this study, we find that the loss of cIAPs leads to a dramatic sensitization to CD95 ligand (CD95L) killing. Surprisingly, this form of cell death can only be blocked by a combination of RIP1 (receptor-interacting protein 1) kinase and caspase inhibitors. Consistently, we detect a large increase in RIP1 levels in the CD95 death-inducing signaling complex (DISC) and in a secondary cytoplasmic complex (complex II) in the presence of IAP antagonists and loss of RIP1-protected cells from CD95L/IAP antagonist-induced death. Cells resistant to CD95L/IAP antagonist treatment could be sensitized by short hairpin RNA-mediated knockdown of cellular FLICE-inhibitory protein (cFLIP). However, only cFLIP(L) and not cFLIP(S) interfered with RIP1 recruitment to the DISC and complex II and protected cells from death. These results demonstrate a fundamental role for RIP1 in CD95 signaling and provide support for a physiological role of caspase-independent death receptor-mediated cell death.


Assuntos
Apoptose , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Inibidoras de Apoptose/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptor fas/fisiologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/fisiologia , Inibidores de Caspase , Inibidores de Cisteína Proteinase/farmacologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteína Ligante Fas/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Receptor fas/metabolismo
18.
Cell Stress Chaperones ; 13(3): 313-26, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18330721

RESUMO

In leukemia cells, hyperthermia enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. The phenomenon is caspase-dependent and results in membrane changes leading to an increased recognition of TRAIL death receptors by TRAIL. Because either caspase-2 or an apical proteolytic event has been recently proposed to act as an initiator of the cell death mechanism induced by heat shock, we have investigated the hierarchy of caspase activation in cells exposed to the combined heat shock plus TRAIL treatment. We report here that caspases-2, -3, and -8 were the first caspases to be activated. As expected, caspase-8 is required and indispensable during the initiation of this death signaling. Caspase-2 may also participate in the phenomenon but, in contrast to caspase-8, its presence appears dispensable because its depletion by small interfering RNA is devoid of effects. Our observations also suggest a role of caspase-3 and of a particular cleaved form of this caspase during the early signals of heat shock plus TRAIL-induced apoptosis.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Febre , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Inibidores de Caspase , Caspases/genética , Ativação Enzimática , Humanos , Células Jurkat , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética
19.
Apoptosis ; 12(9): 1703-20, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17610065

RESUMO

We recently reported that a mild heat shock induces a long lasting stimulation of TRAIL-induced apoptosis of leukemic T-lymphocytes and myeloid cell lines, but not normal T-lymphocytes, which correlates with an enhanced ability of TRAIL to recognize its receptors. As shown here, this phenomenon could be inhibited by the xanthogenate agent D609, a sphingomyelin/ceramide pathway inhibitor. A caspase-dependent and D609-sensitive two-fold increase in ceramide level was elicited by heat shock plus TRAIL combined treatment. One day after heat shock, a similar increase in ceramide was induced by TRAIL. Sphingolipids/ceramides are known to regulate membrane integrity, and heat shock increases membrane fluidity. In this regard, the heat shock plus TRAIL combined treatment resulted in a D609-sensitive membrane fluidization which was far more intense than that induced by heat shock only. We also report that membrane fluidizers, that mimic the effect of heat shock, such benzyl alcohol and ethanol, potently stimulated TRAIL-induced apoptosis. As heat shock, these alcohols increased, in a D609-sensitive manner, membrane fluidity in the presence of TRAIL, the recognition of TRAIL death receptors, and ceramide levels. These results suggest that stress agents that trigger ceramide production and an overall increase in membrane fluidity are stimulators of TRAIL apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Álcool Benzílico/farmacologia , Ceramidas/fisiologia , Etanol/farmacologia , Fluidez de Membrana/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Caspases/metabolismo , Células HL-60 , Temperatura Alta , Humanos , Indolizinas/farmacologia , Células Jurkat , Modelos Biológicos , Doenças de Niemann-Pick/metabolismo , Norbornanos , Fenetilaminas/farmacologia , Tiocarbamatos , Tionas/farmacologia , Células U937
20.
FEBS Lett ; 581(19): 3665-74, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17467701

RESUMO

Hsp27 and alphaB-crystallin are molecular chaperones that are constitutively expressed in several mammalian cells, particularly in pathological conditions. These proteins share functions as diverse as protection against toxicity mediated by aberrantly folded proteins or oxidative-inflammation conditions. In addition, these proteins share anti-apoptotic properties and are tumorigenic when expressed in cancer cells. This review summarizes the current knowledge about Hsp27 and alphaB-crystallin and the implications, either positive or deleterious, of these proteins in pathologies such as neurodegenerative diseases, myopathies, asthma, cataracts and cancers. Approaches towards therapeutic strategies aimed at modulating the expression and/or the activities of Hsp27 and alphaB-crystallin are presented.


Assuntos
Proteínas de Choque Térmico/metabolismo , Inflamação/tratamento farmacológico , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Cadeia B de alfa-Cristalina/metabolismo , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/química , Humanos , Inflamação/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Neoplasias/metabolismo , Conformação Proteica , Cadeia B de alfa-Cristalina/antagonistas & inibidores , Cadeia B de alfa-Cristalina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA