Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 76, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714858

RESUMO

Astronauts are exposed to harsh conditions, including cosmic radiation and microgravity. Spaceflight elongates human telomeres in peripheral blood, which shorten upon return to Earth and approach baseline levels during postflight recovery. Astronauts also encounter muscle atrophy, losing up to 20% loss of muscle mass on spaceflights. Telomere length changes in muscle cells of astronauts remain unexplored. This study investigates telomere alterations in grounded mice experiencing radiation exposure and muscle atrophy, via a hindlimb unloading spaceflight mimicking model. We find telomere lengthening is present in muscle stem cells and in myofiber nuclei, but not in muscle-resident endothelial cells. We further assessed telomere length in the model following hindlimb unloading recovery. We find that telomere length failed to return to baseline values. Our results suggest a role for telomeres in muscle acclimatization, which is relevant for the well-being of astronauts in space, and upon their return to Earth.

2.
J Bone Miner Res ; 36(6): 1159-1173, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529374

RESUMO

Skeletal muscle has remarkable regenerative ability after injury. Mesenchymal fibro-adipogenic progenitors (FAPs) are necessary, active participants during this repair process, but the molecular signatures of these cells and their functional relevance remain largely unexplored. Here, using a lineage tracing mouse model (Gli1-CreER Tomato), we demonstrate that Gli1 marks a small subset of muscle-resident FAPs with elevated Hedgehog (Hh) signaling. Upon notexin muscle injury, these cells preferentially and rapidly expanded within FAPs. Ablation of Gli1+ cells using a DTA mouse model drastically reduced fibroblastic colony-forming unit (CFU-F) colonies generated by muscle cells and impaired muscle repair at 28 days. Pharmacologic manipulation revealed that Gli1+ FAPs rely on Hh signaling to increase the size of regenerating myofiber. Sorted Gli1+ FAPs displayed superior clonogenicity and reduced adipogenic differentiation ability in culture compared to sorted Gli1- FAPs. In a glycerol injury model, Gli1+ FAPs were less likely to give rise to muscle adipocytes compared to other FAPs. Further cell ablation and Hh activator/inhibitor treatments demonstrated their dual actions in enhancing myogenesis and reducing adipogenesis after injury. Examining single-cell RNA-sequencing dataset of FAPs from normal mice indicated that Gli1+ FAPs with increased Hh signaling provide trophic signals to myogenic cells while restrict their own adipogenic differentiation. Collectively, our findings identified a subpopulation of FAPs that play an essential role in skeletal muscle repair. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Adipogenia , Proteínas Hedgehog , Animais , Diferenciação Celular , Camundongos , Desenvolvimento Muscular , Músculo Esquelético , Proteína GLI1 em Dedos de Zinco
3.
J Bone Miner Res ; 34(10): 1894-1909, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31107558

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of extraskeletal bone, or heterotopic ossification (HO), in soft connective tissues such as skeletal muscle. All familial and sporadic cases with a classic clinical presentation of FOP carry a gain-of-function mutation (R206H; c.617 G > A) in ACVR1, a cell surface receptor that mediates bone morphogenetic protein (BMP) signaling. The BMP signaling pathway is recognized for its chondro/osteogenic-induction potential, and HO in FOP patients forms ectopic but qualitatively normal endochondral bone tissue through misdirected cell fate decisions by tissue-resident mesenchymal stem cells. In addition to biochemical ligand-receptor signaling, mechanical cues from the physical environment are transduced to activate intracellular signaling, a process known as mechanotransduction, and can influence cell fates. Utilizing an established mesenchymal stem cell model of mouse embryonic fibroblasts (MEFs) from the Acvr1R206H/+ mouse model that mimics the human disease, we demonstrated that activation of the mechanotransductive effectors Rho/ROCK and YAP1 are increased in Acvr1R206H/+ cells. We show that on softer substrates, a condition associated with low mechanical signaling, the morphology of Acvr1R206H/+ cells is similar to the morphology of control Acvr1+/+ cells on stiffer substrates, a condition that activates mechanotransduction. We further determined that Acvr1R206H/+ cells are poised for osteogenic differentiation, expressing increased levels of chondro/osteogenic markers compared with Acvr1+/+ cells. We also identified increased YAP1 nuclear localization in Acvr1R206H/+ cells, which can be rescued by either BMP inhibition or Rho antagonism. Our results establish RhoA and YAP1 signaling as modulators of mechanotransduction in FOP and suggest that aberrant mechanical signals, combined with and as a result of the increased BMP pathway signaling through mutant ACVR1, lead to misinterpretation of the cellular microenvironment and a heightened sensitivity to mechanical stimuli that promotes commitment of Acvr1R206H/+ progenitor cells to chondro/osteogenic lineages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miosite Ossificante/metabolismo , Osteogênese , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Animais , Camundongos , Miosite Ossificante/patologia , Especificidade por Substrato , Proteínas de Sinalização YAP
4.
Proc Natl Acad Sci U S A ; 115(39): E9182-E9191, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30181272

RESUMO

In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.


Assuntos
DNA , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Força Muscular/genética , Distrofia Muscular de Duchenne/terapia , Plasmídeos , Animais , DNA/genética , DNA/farmacocinética , Modelos Animais de Doenças , Distrofina/genética , Distrofina/imunologia , Distrofina/metabolismo , Vetores Genéticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Força Muscular/imunologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Plasmídeos/genética , Plasmídeos/farmacologia
5.
Nat Protoc ; 12(9): 1855-1870, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28817123

RESUMO

Telomere length has been correlated with various diseases, including cardiovascular disease and cancer. The use of currently available telomere-length measurement techniques is often restricted by the requirement of a large amount of cells (Southern-based techniques) or the lack of information on individual cells or telomeres (PCR-based methods). Although several methods have been used to measure telomere length in tissues as a whole, the assessment of cell-type-specific telomere length provides valuable information on individual cell types. The development of fluorescence in situ hybridization (FISH) technologies enables the quantification of telomeres in individual chromosomes, but the use of these methods is dependent on the availability of isolated cells, which prevents their use with fixed archival samples. Here we describe an optimized quantitative FISH (Q-FISH) protocol for measuring telomere length that bypasses the previous limitations by avoiding contributions from undesired cell types. We have used this protocol on small paraffin-embedded cardiac-tissue samples. This protocol describes step-by-step procedures for tissue preparation, permeabilization, cardiac-tissue pretreatment and hybridization with a Cy3-labeled telomeric repeat complementing (CCCTAA)3 peptide nucleic acid (PNA) probe coupled with cardiac-specific antibody staining. We also describe how to quantify telomere length by means of the fluorescence intensity and area of each telomere within individual nuclei. This protocol provides comparative cell-type-specific telomere-length measurements in relatively small human cardiac samples and offers an attractive technique to test hypotheses implicating telomere length in various cardiac pathologies. The current protocol (from tissue collection to image procurement) takes ∼28 h along with three overnight incubations. We anticipate that the protocol could be easily adapted for use on different tissue types.


Assuntos
Hibridização in Situ Fluorescente/métodos , Miocárdio/química , Telômero/química , Carbocianinas/química , Humanos , Ácidos Nucleicos Peptídicos/química
6.
Nat Med ; 20(3): 255-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531378

RESUMO

The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38ß mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38ß in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.


Assuntos
Envelhecimento , Força Muscular , Músculos/citologia , Regeneração , Rejuvenescimento , Células-Tronco/citologia , Animais , Proliferação de Células , Transplante de Células , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Hidrogéis/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Transplante de Células-Tronco , Fatores de Tempo
7.
Cell ; 143(7): 1059-71, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21145579

RESUMO

In Duchenne muscular dystrophy (DMD), dystrophin mutation leads to progressive lethal skeletal muscle degeneration. For unknown reasons, dystrophin deficiency does not recapitulate DMD in mice (mdx), which have mild skeletal muscle defects and potent regenerative capacity. We postulated that human DMD progression is a consequence of loss of functional muscle stem cells (MuSC), and the mild mouse mdx phenotype results from greater MuSC reserve fueled by longer telomeres. We report that mdx mice lacking the RNA component of telomerase (mdx/mTR) have shortened telomeres in muscle cells and severe muscular dystrophy that progressively worsens with age. Muscle wasting severity parallels a decline in MuSC regenerative capacity and is ameliorated histologically by transplantation of wild-type MuSC. These data show that DMD progression results, in part, from a cell-autonomous failure of MuSC to maintain the damage-repair cycle initiated by dystrophin deficiency. The essential role of MuSC function has therapeutic implications for DMD.


Assuntos
Modelos Animais de Doenças , Camundongos , Distrofia Muscular de Duchenne/genética , Células-Tronco/metabolismo , Telômero/metabolismo , Animais , Proliferação de Células , Distrofina/metabolismo , Humanos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Preconceito
8.
Proc Natl Acad Sci U S A ; 106(41): 17475-80, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805133

RESUMO

Macrophages play an essential role in the resolution of tissue damage through removal of necrotic cells, thus paving the way for tissue regeneration. Macrophages also directly support the formation of new tissue to replace the injury, through their acquisition of an anti-inflammatory, or M2, phenotype, characterized by a gene expression program that includes IL-10, the IL-13 receptor, and arginase 1. We report that deletion of two CREB-binding sites from the Cebpb promoter abrogates Cebpb induction upon macrophage activation. This blocks the downstream induction of M2-specific Msr1, Il10, II13ra, and Arg-1 genes, whereas the inflammatory (M1) genes Il1, Il6, Tnfa, and Il12 are not affected. Mice carrying the mutated Cebpb promoter (betaDeltaCre) remove necrotic tissue from injured muscle, but exhibit severe defects in muscle fiber regeneration. Conditional deletion of the Cebpb gene in muscle cells does not affect regeneration, showing that the C/EBPbeta cascade leading to muscle repair is muscle-extrinsic. While betaDeltaCre macrophages efficiently infiltrate injured muscle they fail to upregulate Cebpb, leading to decreased Arg-1 expression. CREB-mediated induction of Cebpb expression is therefore required in infiltrating macrophages for upregulation of M2-specific genes and muscle regeneration, providing a direct genetic link between these two processes.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Regulação da Expressão Gênica , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Animais , Linfócitos B/fisiologia , Sítios de Ligação , Células da Medula Óssea/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Camundongos , Regiões Promotoras Genéticas , Regeneração , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA