Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1394263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904042

RESUMO

Introduction: Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods: Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results: CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion: Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.


Assuntos
Adipócitos , Envelhecimento , Restrição Calórica , Osso Esponjoso , Camundongos Endogâmicos C57BL , Animais , Masculino , Restrição Calórica/métodos , Camundongos , Envelhecimento/fisiologia , Osso Esponjoso/patologia , Adipócitos/metabolismo , Medula Óssea/metabolismo , Tíbia/metabolismo
2.
J Transl Med ; 22(1): 431, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715059

RESUMO

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Assuntos
Aciltransferases , Neoplasias , Fosforilação Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Proteômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
3.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346199

RESUMO

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/fisiologia , Piroptose , Astrócitos , Gasderminas
4.
Brain Behav Immun ; 115: 374-393, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914099

RESUMO

Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1ß, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.


Assuntos
Gasderminas , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Cuprizona/uso terapêutico , Cuprizona/toxicidade , Modelos Animais de Doenças , Gasderminas/metabolismo , Camundongos Endogâmicos C57BL , Microglia/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Fatores de Crescimento Neural , Oligodendroglia , Proteômica
5.
Int J Biol Macromol ; 245: 125572, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385311

RESUMO

The objective of this study is to activate autophagy in hepatocellular carcinoma for the enhancement of its cellular degradation. Liposomes incorporated chitosan in the core used to improve the stability of lecithin and increase the niacin loading efficiency. Additionally, curcumin as a hydrophobic molecule entrapped into liposomal layers and used as a face layer to minimize the release of niacin in physiological pH 7.4. Folic acid-conjugated chitosan was used to facilitate the delivery of liposomes into a specific location of cancer cells. TEM, UV Visible spectrophotometer, and FTIR confirmed the successful liposomal formation and good encapsulation efficiency. Based on the cellular proliferation of HePG2, the results revealed that there was a significant inhibition of growth rate of HePG2 after 48 h of incubation at a concentration of 100 µg/mL by 91 % ± 1 %, P ≤ 0.002 (pure niacin), 55 % ± 3 %, P ≤ 0.001 (pure curcumin), 83 % ± 1.5 %, P ≤ 0.001 (niacin NPs), and 51 % ± 1.5 % P ≤ 0.0001 (curcumin-niacin NPs) of relative to the control. Increasingly, The expression of mRNA of mTOR was significantly increased by 0.72 ± 0.08 P ≤ 0.001, 1 ± 0.1, 0. P ≤ 0.001, 5 ± 0.07 P ≤ 0.01, and 1.3 ± 0.02 P ≤ 0.001 folds) in pure niacin, pure curcumin, niacin NPs and curcumin -niacin NPs, respectively, relative to the control with an expression of 0.3 ± 0.08. Additionally, the expression of p62 mRNA was significantly increased by 0.92 ± 0.07 P ≤ 0.05, 1.7 ± 0.07 P ≤ 0.0001, 0.72 ± 0.08 P ≤ 0.5, and 2.1 ± 0.1 P ≤ 0.0001 folds relative to that of the control with an expression of 0.72 ± 0.08. The results highlight the efficient therapies of biomaterials derived from natural sources that can be used in cancer therapies instead of traditional chemotherapies.


Assuntos
Carcinoma Hepatocelular , Quitosana , Curcumina , Neoplasias Hepáticas , Nanopartículas , Niacina , Humanos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/química , Niacina/farmacologia , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Portadores de Fármacos/química , Autofagia , Nanopartículas/química , Tamanho da Partícula
6.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623332

RESUMO

We studied a child with severe viral, bacterial, fungal, and parasitic diseases, who was homozygous for a loss-of-function mutation of REL, encoding c-Rel, which is selectively expressed in lymphoid and myeloid cells. The patient had low frequencies of NK, effector memory cells reexpressing CD45RA (Temra) CD8+ T cells, memory CD4+ T cells, including Th1 and Th1*, Tregs, and memory B cells, whereas the counts and proportions of other leukocyte subsets were normal. Functional deficits of myeloid cells included the abolition of IL-12 and IL-23 production by conventional DC1s (cDC1s) and monocytes, but not cDC2s. c-Rel was also required for induction of CD86 expression on, and thus antigen-presenting cell function of, cDCs. Functional deficits of lymphoid cells included reduced IL-2 production by naive T cells, correlating with low proliferation and survival rates and poor production of Th1, Th2, and Th17 cytokines by memory CD4+ T cells. In naive CD4+ T cells, c-Rel is dispensable for early IL2 induction but contributes to later phases of IL2 expression. The patient's naive B cells displayed impaired MYC and BCL2L1 induction, compromising B cell survival and proliferation and preventing their differentiation into Ig-secreting plasmablasts. Inherited c-Rel deficiency disrupts the development and function of multiple myeloid and lymphoid cells, compromising innate and adaptive immunity to multiple infectious agents.


Assuntos
Genes rel , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Proteínas Proto-Oncogênicas c-rel/deficiência , Proteínas Proto-Oncogênicas c-rel/genética , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Criança , Consanguinidade , Feminino , Transplante de Células-Tronco Hematopoéticas , Homozigoto , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Ativação Linfocitária , Linfócitos/classificação , Linfócitos/imunologia , Mutação , Células Mieloides/imunologia , Doenças da Imunodeficiência Primária/terapia , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA