Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(20): 14357-14376, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37795958

RESUMO

Inhibitors of histone deacetylases (HDACs) have received special attention as novel anticancer agents. Among various types of synthetic inhibitors, benzamides constitute an important class, and one is an approved drug (chidamide). Here, we present a novel class of HDAC inhibitors containing the N-(2-aminophenyl)-benzamide functionality as the zinc-binding group linked to various cap groups, including the amino acids pyroglutamic acid and proline. We have identified benzamides that inhibit HADC1 and HDAC2 at nanomolar concentrations, with antiproliferative activity at micromolar concentrations against A549 and SF268 cancer cell lines. Docking studies shed light on the mode of binding of benzamide inhibitors to HDAC1, whereas cellular analysis revealed downregulated expression of EGFR mRNA and protein. Two benzamides were investigated in a mouse model of bleomycin-induced pulmonary fibrosis, and both showed efficacy on a preventative dosing schedule. N-(2-Aminophenyl)-benzamide inhibitors of class I HDACs might lead to new approaches for treating fibrotic disorders.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Camundongos , Animais , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzamidas/química , Linhagem Celular Tumoral
2.
Bioorg Med Chem ; 28(2): 115216, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31864778

RESUMO

Autotaxin (ATX), a glycoprotein (~125 kDa) isolated as an autocrine motility factor from melanoma cells, belongs to a seven-membered family of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), and exhibits lysophospholipase D activity. ATX is responsible for the hydrolysis of lysophosphatidylcholine (LPC) to produce the bioactive lipid lysophosphatidic acid (LPA), which is upregulated in a variety of pathological inflammatory conditions, including fibrosis, cancer, liver toxicity and thrombosis. Given its role in human disease, the ATX-LPA axis is an interesting target for therapy, and the development of novel potent ATX inhibitors is of great importance. In the present work a novel class of ATX inhibitors, optically active derivatives of 2-pyrrolidinone and pyrrolidine heterocycles were synthesized. Some of them exhibited interesting in vitro activity, namely the hydroxamic acid 16 (IC50 700 nM) and the carboxylic acid 40b (IC50 800 nM), while the boronic acid derivatives 3k (IC50 50 nM), 3l (IC50 120 nM), 3 m (IC50 180 nM) and 21 (IC50 35 nM) were found to be potent inhibitors of ATX.


Assuntos
Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirrolidinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Diester Fosfórico Hidrolases/química , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade
3.
Expert Opin Ther Pat ; 23(9): 1123-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23641951

RESUMO

INTRODUCTION: Autotaxin (ATX) is a lysophospholipase D enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA) and choline. LPA is a bioactive lipid mediator that activates several transduction pathways, and is involved in migration, proliferation and survival of various cells. Thus, ATX is an attractive medicinal target. AREAS COVERED: The aim of this review is to summarize ATX inhibitors, reported in patents from 2006 up to now, describing their discovery and biological evaluation. EXPERT OPINION: ATX has been implicated in various pathological conditions, such as cancer, chronic inflammation, neuropathic pain, fibrotic diseases, etc. Although there is an intensive effort on the discovery of potent and selective ATX inhibitors in order to identify novel medicinal agents, up to now, no ATX inhibitor has reached clinical trials. However, the use of ATX inhibitors seems an attractive strategy for the development of novel medicinal agents, for example anticancer therapeutics.


Assuntos
Desenho de Fármacos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Animais , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Humanos , Patentes como Assunto , Diester Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA