Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
2.
Nat Rev Genet ; 24(8): 573-584, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37258725

RESUMO

The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.


Assuntos
Testes Genéticos , Genômica , Humanos , Genômica/métodos , Medicina de Precisão/métodos
3.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34548323

RESUMO

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Assuntos
Neoplasias , Biomarcadores Tumorais/genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Prognóstico , Microambiente Tumoral
4.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686071

RESUMO

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Assuntos
Neoplasias Encefálicas/imunologia , Líquido Cefalorraquidiano/imunologia , Leucócitos , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Prognóstico
5.
Ther Adv Med Oncol ; 12: 1758835920929579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670419

RESUMO

BACKGROUND: The aim of this study was to test the feasibility and utility of developing patient-derived orthotopic xenograft (PDOX) models for patients with malignant peripheral nerve sheath tumors (MPNSTs) to aid therapeutic interventions in real time. PATIENT & METHODS: A sporadic relapsed MPNST developed in a 14-year-old boy was engrafted in mice, generating a PDOX model for use in co-clinical trials after informed consent. SNP-array and exome sequencing was performed on the relapsed tumor. Genomics, drug availability, and published literature guided PDOX treatments. RESULTS: A MPNST PDOX model was generated and expanded. Analysis of the patient's relapsed tumor revealed mutations in the MAPK1, EED, and CDK2NA/B genes. First, the PDOX model was treated with the same therapeutic regimen as received by the patient (everolimus and trametinib); after observing partial response, tumors were left to regrow. Regrown tumors were treated based on mutations (palbociclib and JQ1), drug availability, and published literature (nab-paclitaxel; bevacizumab; sorafenib plus doxorubicin; and gemcitabine plus docetaxel). The patient had a lung metastatic relapse and was treated according to PDOX results, first with nab-paclitaxel, second with sorafenib plus doxorubicin after progression, although a complete response was not achieved and multiple metastasectomies were performed. The patient is currently disease free 46 months after first relapse. CONCLUSION: Our results indicate the feasibility of generating MPNST-PDOX and genomic characterization to guide treatment in real time. Although the treatment responses observed in our model did not fully recapitulate the patient's response, this pilot study identify key aspects to improve our co-clinical testing approach in real time.

6.
Cell Stem Cell ; 26(6): 845-861.e12, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32396863

RESUMO

Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , DNA Ribossômico , Humanos , Receptores Acoplados a Proteínas G
7.
Genome Biol ; 21(1): 112, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393363

RESUMO

Robust protocols and automation now enable large-scale single-cell RNA and ATAC sequencing experiments and their application on biobank and clinical cohorts. However, technical biases introduced during sample acquisition can hinder solid, reproducible results, and a systematic benchmarking is required before entering large-scale data production. Here, we report the existence and extent of gene expression and chromatin accessibility artifacts introduced during sampling and identify experimental and computational solutions for their prevention.


Assuntos
Artefatos , Genômica , Análise de Célula Única , Criopreservação , Epigenoma , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Fatores de Tempo , Transcriptoma
8.
JCI Insight ; 52019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843871

RESUMO

The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-Associated Degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the Small p97/VCP Interacting Protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation-associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.


Assuntos
Reprogramação Celular/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Epigenômica , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reprogramação Celular/genética , Metilação de DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Transportador de Glucose Tipo 1 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Fenótipo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/farmacologia , Proteômica
9.
Cancer Lett ; 447: 86-92, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30677446

RESUMO

Somatic epigenetic inactivation of the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) is frequent in colorectal cancer (CRC); however, its involvement in CRC predisposition remains unexplored. We assessed the role and relevance of MGMT germline mutations and epimutations in familial and early-onset CRC. Mutation and promoter methylation screenings were performed in 473 familial and/or early-onset mismatch repair-proficient nonpolyposis CRC cases. No constitutional MGMT inactivation by promoter methylation was observed. Of six rare heterozygous germline variants identified, c.346C > T (p.H116Y) and c.476G > A (p.R159Q), detected in three and one families respectively, affected highly conserved residues and showed segregation with cancer in available family members. In vitro, neither p.H116Y nor p.R159Q caused statistically significant reduction of MGMT repair activity. No evidence of somatic second hits was found in the studied tumors. Case-control data showed over-representation of c.346C > T (p.H116Y) in familial CRC compared to controls, but no overall association of MGMT mutations with CRC predisposition. In conclusion, germline mutations and constitutional epimutations in MGMT are not major players in hereditary CRC. Nevertheless, the over-representation of c.346C > T (p.H116Y) in our familial CRC cohort warrants further research.


Assuntos
Neoplasias Colorretais/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Células Germinativas/fisiologia , Mutação em Linhagem Germinativa/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto Jovem
11.
Clin Cancer Res ; 24(15): 3755-3766, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618620

RESUMO

Purpose: To investigate the genetic basis of cisplatin resistance as efficacy of cisplatin-based chemotherapy in the treatment of distinct malignancies is often hampered by intrinsic or acquired drug resistance of tumor cells.Experimental Design: We produced 14 orthoxenograft transplanting human nonseminomatous testicular germ cell tumors (TGCT) in mice, keeping the primary tumor features in terms of genotype, phenotype, and sensitivity to cisplatin. Chromosomal and genetic alterations were evaluated in matched cisplatin-sensitive and their counterpart orthoxenografts that developed resistance to cisplatin in nude mice.Results: Comparative genomic hybridization analyses of four matched orthoxenografts identified recurrent chromosomal rearrangements across cisplatin-resistant tumors in three of them, showing gains at 9q32-q33.1 region. We found a clinical correlation between the presence of 9q32-q33.1 gains in cisplatin-refractory patients and poorer overall survival (OS) in metastatic germ cell tumors. We studied the expression profile of the 60 genes located at that genomic region. POLE3 and AKNA were the only two genes deregulated in resistant tumors harboring the 9q32-q33.1 gain. Moreover, other four genes (GCS, ZNF883, CTR1, and FLJ31713) were deregulated in all five resistant tumors independently of the 9q32-q33.1 amplification. RT-PCRs in tumors and functional analyses in Caenorhabditis elegans (C. elegans) indicate that the influence of 9q32-q33.1 genes in cisplatin resistance can be driven by either up- or downregulation. We focused on glucosylceramide synthase (GCS) to demonstrate that the GCS inhibitor DL-threo-PDMP resensitizes cisplatin-resistant germline-derived orthoxenografts to cisplatin.Conclusions: Orthoxenografts can be used preclinically not only to test the efficiency of drugs but also to identify prognosis markers and gene alterations acting as drivers of the acquired cisplatin resistance. Clin Cancer Res; 24(15); 3755-66. ©2018 AACR.


Assuntos
Cisplatino/efeitos adversos , DNA Polimerase III/genética , Proteínas de Ligação a DNA/genética , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Proteínas Nucleares/genética , Nucleoproteínas/genética , Neoplasias Testiculares/tratamento farmacológico , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Aberrações Cromossômicas/efeitos dos fármacos , Cromossomos Humanos Par 9/efeitos dos fármacos , Cromossomos Humanos Par 9/genética , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Mutação Puntual/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
12.
Oncotarget ; 8(31): 51621-51629, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881673

RESUMO

BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.

13.
Adv Cancer Res ; 135: 189-220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882223

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression mainly at the posttranscriptional level. Similar to protein-coding genes, their expression is also controlled by genetic and epigenetic mechanisms. Disruption of these control processes leads to abnormal expression of miRNAs in cancer. In this chapter, we discuss the supportive links between miRNAs and epigenetics in the context of carcinogenesis. miRNAs can be epigenetically regulated by DNA methylation and/or specific histone modifications. However, they can themselves (epi-miRNAs) repress key enzymes that drive epigenetic remodeling and also bind to complementary sequences in gene promoters, recruiting specific protein complexes that modulate chromatin structure and gene expression. All these issues affect the transcriptional landscape of cells. Most important, in the cancer clinical scenario, knowledge about miRNAs epigenetic dysregulation can not only be beneficial as a prognostic biomarker, but can also help in the design of new therapeutic approaches.


Assuntos
Epigênese Genética/genética , MicroRNAs/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos
14.
Proc Natl Acad Sci U S A ; 113(47): E7535-E7544, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821766

RESUMO

Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Células HCT116 , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína 1 de Ligação a Y-Box/genética
15.
Lancet Oncol ; 17(10): 1386-1395, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27575023

RESUMO

BACKGROUND: Cancer of unknown primary ranks in the top ten cancer presentations and has an extremely poor prognosis. Identification of the primary tumour and development of a tailored site-specific therapy could improve the survival of these patients. We examined the feasability of using DNA methylation profiles to determine the occult original cancer in cases of cancer of unknown primary. METHODS: We established a classifier of cancer type based on the microarray DNA methylation signatures (EPICUP) in a training set of 2790 tumour samples of known origin representing 38 tumour types and including 85 metastases. To validate the classifier, we used an independent set of 7691 known tumour samples from the same tumour types that included 534 metastases. We applied the developed diagnostic test to predict the tumour type of 216 well-characterised cases of cancer of unknown primary. We validated the accuracy of the predictions from the EPICUP assay using autopsy examination, follow-up for subsequent clinical detection of the primary sites months after the initial presentation, light microscopy, and comprehensive immunohistochemistry profiling. FINDINGS: The tumour type classifier based on the DNA methylation profiles showed a 99·6% specificity (95% CI 99·5-99·7), 97·7% sensitivity (96·1-99·2), 88·6% positive predictive value (85·8-91·3), and 99·9% negative predictive value (99·9-100·0) in the validation set of 7691 tumours. DNA methylation profiling predicted a primary cancer of origin in 188 (87%) of 216 patients with cancer with unknown primary. Patients with EPICUP diagnoses who received a tumour type-specific therapy showed improved overall survival compared with that in patients who received empiric therapy (hazard ratio [HR] 3·24, p=0·0051 [95% CI 1·42-7·38]; log-rank p=0·0029). INTERPRETATION: We show that the development of a DNA methylation based assay can significantly improve diagnoses of cancer of unknown primary and guide more precise therapies associated with better outcomes. Epigenetic profiling could be a useful approach to unmask the original primary tumour site of cancer of unknown primary cases and a step towards the improvement of the clinical management of these patients. FUNDING: European Research Council (ERC), Cellex Foundation, the Institute of Health Carlos III (ISCIII), Cancer Australia, Victorian Cancer Agency, Samuel Waxman Cancer Research Foundation, the Health and Science Departments of the Generalitat de Catalunya, and Ferrer.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias Primárias Desconhecidas/genética , Receptores ErbB/genética , Feminino , Humanos , Masculino , Neoplasias Primárias Desconhecidas/classificação , Neoplasias Primárias Desconhecidas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos
16.
Gastroenterology ; 151(5): 961-972, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521480

RESUMO

BACKGROUND & AIMS: There are few validated biomarkers that can be used to predict outcomes for patients with colorectal cancer. Part of the challenge is the genetic and molecular heterogeneity of colorectal tumors not only among patients, but also within tumors. We have explored intratumor heterogeneity at the epigenetic level, due to its dynamic nature. We analyzed DNA methylation profiles of the digestive tract surface and the central bulk and invasive front regions of colorectal tumors. METHODS: We determined the DNA methylation profiles of >450,000 CpG sites in 3 macrodissected regions of 79 colorectal tumors and 23 associated liver metastases, obtained from 2 hospitals in Spain. We also analyzed samples for KRAS and BRAF mutations, 499,170 single nucleotide polymorphisms, and performed immunohistochemical analyses. RESULTS: We observed differences in DNA methylation among the 3 tumor sections; regions of tumor-host interface differed the most from the other tumor sections. Interestingly, tumor samples collected from areas closer to the gastrointestinal transit most frequently shared methylation events with metastases. When we calculated individual coefficients to quantify heterogeneity, we found that epigenetic homogeneity was significantly associated with short time of relapse-free survival (log-rank P = .037) and short time of overall survival (log-rank P = .026) in patients with locoregional colorectal cancer. CONCLUSIONS: In an analysis of 79 colorectal tumors, we found significant heterogeneity in patterns of DNA methylation within each tumor; the level of heterogeneity correlates with times of relapse-free and overall survival.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , Epigênese Genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Estudos Retrospectivos , Análise de Sobrevida
17.
J Natl Cancer Inst ; 108(11)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381626

RESUMO

BACKGROUND: Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. METHODS: A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. RESULTS: BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. CONCLUSIONS: In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Fusão Gênica , Genes BRCA1 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Animais , Proteína BRCA1/deficiência , Cisplatino/uso terapêutico , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Melfalan/uso terapêutico , Camundongos , Mutação , Transplante de Neoplasias , Nimustina/uso terapêutico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Regiões Promotoras Genéticas
18.
Oncotarget ; 7(7): 8253-67, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26811497

RESUMO

Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Ceramidas/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Humanos , Técnicas Imunoenzimáticas , Imunossupressores/farmacologia , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Nus , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 7(3): 3084-97, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26625211

RESUMO

Platinum-derived drugs such as cisplatin and carboplatin are among the most commonly used cancer chemotherapy drugs, but very few specific molecular and cellular markers predicting differential sensitivity to these agents in a given tumor type have been clearly identified. Epigenetic gene silencing is increasingly being recognized as a factor conferring distinct tumoral drug sensitivity, so we have used a comprehensive DNA methylation microarray platform to interrogate the widely characterized NCI60 panel of human cancer cell lines with respect to CpG methylation status and cisplatin/carboplatin sensitivity. Using this approach, we have found promoter CpG island hypermethylation-associated silencing of the putative DNA/RNA helicase Schlafen-11 (SLFN11) to be associated with increased resistance to platinum compounds. We have also experimentally validated these findings in vitro. In this setting, we also identified the BRCA1 interacting DHX9 RNA helicase (also known as RHA) as a protein partner for SLFN11, suggesting a mechanistic pathway for the observed chemoresistance effect. Most importantly, we have been able to extend these findings clinically, following the observation that those patients with ovarian and non-small cell lung cancer carrying SLFN11 hypermethylation had a poor response to both cisplatin and carboplatin treatments. Overall, these results identify SLFN11 epigenetic inactivation as a predictor of resistance to platinum drugs in human cancer.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/genética , Neoplasias Ovarianas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Metilação de DNA/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Interferência de RNA , RNA Interferente Pequeno/genética
20.
Cancer Res ; 75(18): 3936-45, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26208904

RESUMO

Recent efforts to sequence human cancer genomes have highlighted that point mutations in genes involved in the epigenetic setting occur in tumor cells. Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis, where little is known about the genetic events related to its development. Herein, we have identified the presence of homozygous deletions of the candidate histone acetyltransferase KAT6B, and the loss of the corresponding transcript, in SCLC cell lines and primary tumors. Furthermore, we show, in vitro and in vivo, that the depletion of KAT6B expression enhances cancer growth, while its restoration induces tumor suppressor-like features. Most importantly, we demonstrate that KAT6B exerts its tumor-inhibitory role through a newly defined type of histone H3 Lys23 acetyltransferase activity.


Assuntos
Carcinoma de Células Pequenas/enzimologia , Histona Acetiltransferases/fisiologia , Neoplasias Pulmonares/enzimologia , Proteínas de Neoplasias/fisiologia , Acetilação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Xenoenxertos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Irinotecano , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA