Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 211-218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600391

RESUMO

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Assuntos
Proteína Forkhead Box O1 , Memória Imunológica , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Proteína Forkhead Box O1/metabolismo , Edição de Genes , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia
2.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986944

RESUMO

Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.

3.
Clin Cancer Res ; 29(8): 1450-1459, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36705597

RESUMO

PURPOSE: Preclinical data showed that prophylactic, low-dose temozolomide (TMZ) significantly prevented breast cancer brain metastasis. We present results of a phase I trial combining T-DM1 with TMZ for the prevention of additional brain metastases after previous occurrence and local treatment in patients with HER2+ breast cancer. PATIENTS AND METHODS: Eligible patients had HER2+ breast cancer with brain metastases and were within 12 weeks of whole brain radiation therapy (WBRT), stereotactic radiosurgery, and/or surgery. Standard doses of T-DM1 were administered intravenously every 21 days (3.6 mg/kg) and TMZ was given orally daily in a 3+3 phase I dose escalation design at 30, 40, or 50 mg/m2, continuously. DLT period was one 21-day cycle. Primary endpoint was safety and recommended phase II dose. Symptom questionnaires, brain MRI, and systemic CT scans were performed every 6 weeks. Cell-free DNA sequencing was performed on patients' plasma and CSF. RESULTS: Twelve women enrolled, nine (75%) with prior SRS therapy and three (25%) with prior WBRT. Grade 3 or 4 AEs included thrombocytopenia (1/12), neutropenia (1/12), lymphopenia (6/12), and decreased CD4 (6/12), requiring pentamidine for Pneumocystis jirovecii pneumonia prophylaxis. No DLT was observed. Four patients on the highest TMZ dose underwent dose reductions. At trial entry, 6 of 12 patients had tumor mutations in CSF, indicating ongoing metastatic colonization despite a clear MRI. Median follow-up on study was 9.6 m (2.8-33.9); only 2 patients developed new parenchymal brain metastases. Tumor mutations varied with patient outcome. CONCLUSIONS: Metronomic TMZ in combination with standard dose T-DM1 shows low-grade toxicity and potential activity in secondary prevention of HER2+ brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Temozolomida/uso terapêutico , Prevenção Secundária , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA