Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(8): 1053-1063, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164652

RESUMO

The placenta is a fetal organ that performs critical functions to maintain pregnancy and support fetal development, including metabolism and transport of xenobiotics and steroids between the maternal-fetal unit. In vitro placenta models are used to study xenobiotic and steroid disposition, but how well these models recapitulate the human placenta is not well understood. We first characterized the abundance of proteins involved in xenobiotic and steroid disposition in human placental tissue. In pooled human placenta, the following xenobiotic and steroid disposition proteins were detected (highest to lowest), 1) enzymes: glutathione S-transferase P, carbonyl reductase 1, aldo-keto reductase 1B1, hydroxysteroid dehydrogenases (HSD3B1 and HSD11B1), aromatase, epoxide hydrolase 1 (EPHX1) and steryl-sulfatase, and 2) transporters: monocarboxylate transporters (MCT1 and 4), organic anion transporting polypeptide 2B1, organic anion transporter 4, and breast cancer resistance protein (BCRP). Then, the tissue proteomics data were compared with four placental cell lines (BeWo, JEG-3, JAR, and HTR-8/SVneo). The differential global proteomics analysis revealed that the tissue and cell lines shared 1420 cytosolic and 1186 membrane proteins. Although extravillous trophoblast and cytotrophoblast marker proteins were detected in all cell lines, only BeWo and JEG-3 cells expressed the syncytiotrophoblast marker, chorionic somatomammotropin hormone 1. BeWo and JEG-3 cells expressed most target proteins including aromatase, HSDs, EPHX1, MCT1, and BCRP. JEG-3 cells treated with commonly detected phthalates in human biofluids showed dysregulation of steroid pathways. The data presented here show that BeWo and JEG-3 cells are closer to the placental tissue for studying xenobiotic and steroid disposition. SIGNIFICANCE STATEMENT: This is the first study to compare proteomics data of human placental tissue and cell lines (BeWo, JAR, JEG-3, and HTR-8/SVneo). The placental cell line and tissue proteomes are vastly different, but BeWo and JEG-3 cells showed greater resemblance to the tissue in the expression of xenobiotic and steroid disposition proteins. These data will assist researchers to select an optimum cell model for mechanistic investigations on xenobiotic and steroid disposition in the placenta.


Assuntos
Aromatase , Placenta , Gravidez , Humanos , Feminino , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Aromatase/metabolismo , Xenobióticos/metabolismo , Proteômica , Proteínas de Neoplasias/metabolismo , Esteroides/metabolismo
2.
Nutrients ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432434

RESUMO

BACKGROUND: Previous experimental studies showed that limiting methionine in the diet of animals or in cell culture media suppresses mammary cancer cell proliferation or metastasis. However, no previous study has investigated the associations of changes in methionine intake with survival among breast cancer survivors. We aimed to examine the association between changes in dietary intake of methionine, folate/folic acid, and vitamin B12 from before to after diagnosis of breast cancer, and mortality among breast cancer survivors. METHODS: We included 1553 postmenopausal women from the Women's Health Initiative who were diagnosed with invasive breast cancer and completed a food frequency questionnaire both before and after breast cancer diagnosis. Multivariable Cox proportional hazards regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence (CIs) of all-cause and breast cancer mortality associated with changes in methionine intake and changes in folate/folic acid and vitamin B12 intake. RESULTS: Relative to pre-diagnosis, 28% of women decreased methionine intake by ≥20%, 30% of women increased methionine intake by ≥20%, and 42% of women had a relatively stable methionine intake (±19.9%) following breast cancer diagnosis. During a mean 16.1 years of follow up, there were 772 deaths in total, including 195 deaths from breast cancer. Compared to women with relatively stable methionine intake, women with decreased methionine intake had lower risks of all-cause (HR 0.78, 95% CI 0.62-0.97) and breast cancer mortality (HR 0.58, 95% CI 0.37-0.91) in fully adjusted models. In contrast, increased methionine intake or changes in folate/folic acid or vitamin B12 intake were not associated with all-cause or breast cancer mortality. CONCLUSIONS: Among breast cancer survivors, decreased methionine intake after breast cancer diagnosis was associated with lower risk of all-cause and breast cancer mortality.


Assuntos
Neoplasias , Vitamina B 12 , Feminino , Animais , Ácido Fólico/metabolismo , Metionina/metabolismo , Pós-Menopausa , Estudos Prospectivos , Fatores de Risco , Racemetionina , Ingestão de Alimentos
3.
Elife ; 112022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389339

RESUMO

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep longevity and genomic data. We use a 'pan-mammalian' microarray that provides a common platform for assaying the methylome across mammalian clades. We computed epigenetic clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic variation. We describe the multifactorial variance of methylation at these CpGs and show that high-fat diet augments the age-related changes. Entropy increases with age. The progression to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a given age. We identified two genetic loci that modulate epigenetic age acceleration (EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and the other on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated with EAA in humans, including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome analyses revealed correlations with oxidation-reduction, metabolic, and immune response pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a tight coupling between the metabolic state and epigenetic aging.


Assuntos
Epigênese Genética , Epigenômica , Envelhecimento/genética , Animais , Metilação de DNA , Epigenômica/métodos , Feminino , Loci Gênicos , Masculino , Mamíferos/genética , Camundongos
4.
Clin Epigenetics ; 12(1): 76, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493461

RESUMO

BACKGROUND: A long-term opioid use has been associated with hypermethylation of the opioid receptor mu 1 (OPRM1) promoter. Very little is currently known about the early epigenetic response to therapeutic opioids. Here, we examine whether we can detect DNA methylation changes associated with a few days' use of prescribed opioids. Genome-wide DNA methylation was assayed in a cohort of 33 opioid-naïve participants who underwent standard dental surgery followed by opioid self-administration. Saliva samples were collected before surgery (visit 1), and at two postsurgery visits at 2.7 ± 1.5 days (visit 2), and 39 ± 10 days (visit 3) after the discontinuation of opioid analgesics. RESULTS: The perioperative methylome underwent significant changes over the three visits that were primarily due to postoperative inflammatory response and cell heterogeneity. To specifically examine the effect of opioids, we started with a candidate gene approach and evaluated 10 CpGs located in the OPRM1 promoter. There was a significant cross-sectional variability in opioid use, and for participants who self-administered the prescribed drugs, the total dosage ranged from 5-210 morphine milligram equivalent (MME). Participants were categorized by cumulative dosage into three groups: < 25 MME, 25-90 MME, and ≥ 90 MME. Using mixed-effects modeling, 4 CpGs had significant positive associations with opioid dose at two-tailed p value < 0.05, and overall, 9 of the 10 OPRM1 promoter CpGs showed the predicted higher methylation in the higher dose groups relative to the lowest dose group. After adjustment for age, cellular heterogeneity, and past tobacco use, the promoter mean methylation also had positive associations with cumulative MME (regression coefficient = 0.0002, one-tailed p value = 0.02) and duration of opioid use (regression coefficient = 0.003, one-tailed p value = 0.001), but this effect was significant only for visit 3. A preliminary epigenome-wide association study identified a significant CpG in the promoter of the RAS-related signaling gene, RASL10A, that may be predictive of opioid dosage. CONCLUSION: The present study provides evidence that the hypermethylation of the OPRM1 promoter is in response to opioid use and that epigenetic differences in OPRM1 and other sites are associated with a short-term use of therapeutic opioids.


Assuntos
Analgésicos Opioides/farmacologia , Metilação de DNA/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Adulto , Analgésicos Opioides/administração & dosagem , Estudos de Casos e Controles , Ilhas de CpG/genética , Epigênese Genética , Epigenoma/efeitos dos fármacos , Epigenoma/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/metabolismo , Período Perioperatório , Variantes Farmacogenômicos/genética , Regiões Promotoras Genéticas/genética , Receptores Opioides mu/metabolismo , Saliva/metabolismo , Proteínas ras/efeitos dos fármacos , Proteínas ras/genética
5.
Biomark Res ; 7: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149338

RESUMO

BACKGROUND: Changes in DNA methylation over the course of life may provide an indicator of risk for cancer. We explored longitudinal changes in CpG methylation from blood leukocytes, and likelihood of future cancer diagnosis. METHODS: Peripheral blood samples were obtained at baseline and at follow-up visit from 20 participants in the Health, Aging and Body Composition prospective cohort study. Genome-wide CpG methylation was assayed using the Illumina Infinium Human MethylationEPIC (HM850K) microarray. RESULTS: Global patterns in DNA methylation from CpG-based analyses showed extensive changes in cell composition over time in participants who developed cancer. By visit year 6, the proportion of CD8+ T-cells decreased (p-value = 0.02), while granulocytes cell levels increased (p-value = 0.04) among participants diagnosed with cancer compared to those who remained cancer-free (cancer-free vs. cancer-present: 0.03 ± 0.02 vs. 0.003 ± 0.005 for CD8+ T-cells; 0.52 ± 0.14 vs. 0.66 ± 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs with suggestive p-values ≤10- 5 for differential methylation between cancer-free and cancer-present groups, including a CpG located in MTA3, a gene linked with metastasis. At a lenient statistical threshold (p-value ≤3 × 10- 5), the top 10 cancer-associated CpGs included a site near RPTOR that is involved in the mTOR pathway, and the candidate tumor suppressor genes REC8, KCNQ1, and ZSWIM5. However, only the CpG in RPTOR (cg08129331) was replicated in an independent data set. Analysis of within-individual change from baseline to Year 6 found significant correlations between the rates of change in methylation in RPTOR, REC8 and ZSWIM5, and time to cancer diagnosis. CONCLUSION: The results show that changes in cellular composition explains much of the cross-sectional and longitudinal variation in CpG methylation. Additionally, differential methylation and longitudinal dynamics at specific CpGs could provide powerful indicators of cancer development and/or progression. In particular, we highlight CpG methylation in the RPTOR gene as a potential biomarker of cancer that awaits further validation.

6.
Mech Ageing Dev ; 162: 27-37, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28249716

RESUMO

In humans, DNA methylation at specific CpG sites can be used to estimate the 'epigenetic clock', a biomarker of aging and health. The mechanisms that regulate the aging epigenome and level of conservation are not entirely clear. We performed affinity-based enrichment with methyl-CpG binding domain protein followed by high-throughput sequencing (MBD-seq) to assay DNA methylation in mouse samples. Consistent with previous reports, aging is associated with increase in methylation at CpG islands that likely overlap regulatory regions of genes that have been implicated in cancers (e.g., C1ql3, Srd5a2 and Ptk7). The differentially methylated regions in mice have high sequence conservation in humans and the pattern of methylation is also largely conserved between the two species. Based on human ENCODE data, these sites are targeted by polycomb proteins, including EZH2. Chromatin immunoprecipitation confirmed that these regions interact with EZH2 in mice as well, and there may be reduction in EZH2 occupancy with age at C1ql3. This adds to the growing evidence that EZH2 is part of the protein machinery that shapes the aging epigenome. The conservation in both sequence and methylation patterns of the age-dependent CpGs indicate that the epigenetic clock is a fundamental feature of aging in mammals.


Assuntos
Envelhecimento/metabolismo , Ilhas de CpG/fisiologia , Metilação de DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Receptores Proteína Tirosina Quinases/metabolismo
7.
PLoS One ; 10(3): e0118466, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742137

RESUMO

There is extensive variation in DNA methylation between individuals and ethnic groups. These differences arise from a combination of genetic and non-genetic influences and potential modifiers include nutritional cues, early life experience, and social and physical environments. Here we compare genome-wide DNA methylation in neonatal cord blood from African American (AA; N = 112) and European American (EA; N = 91) participants of the CANDLE Study (Conditions Affecting Neurocognitive Development and Learning in Early Childhood). Our goal is to determine if there are replicable ancestry-specific methylation patterns that may implicate risk factors for diseases that have differential prevalence between populations. To identify the most robust ancestry-specific CpG sites, we replicate our results in lymphoblastoid cell lines from Yoruba African and CEPH European panels of HapMap. We also evaluate the influence of maternal nutrition--specifically, plasma levels of vitamin D and folate during pregnancy--on methylation in newborns. We define stable ancestry-dependent methylation of genes that include tumor suppressors and cell cycle regulators (e.g., APC, BRCA1, MCC). Overall, there is lower global methylation in African ancestral groups. Plasma levels of 25-hydroxy vitamin D are also considerably lower among AA mothers and about 60% of AA and 40% of EA mothers have concentrations below 20 ng/ml. Using a weighted correlation analysis, we define a network of CpG sites that is jointly modulated by ancestry and maternal vitamin D. Our results show that differences in DNA methylation patterns are remarkably stable and maternal micronutrients can exert an influence on the child epigenome.


Assuntos
População Negra/genética , Ilhas de CpG , Metilação de DNA , Predisposição Genética para Doença , Fenômenos Fisiológicos da Nutrição Materna , População Branca/genética , Adolescente , Adulto , Epigênese Genética , Feminino , Sangue Fetal/metabolismo , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Adulto Jovem
8.
Front Neurosci ; 6: 63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22593731

RESUMO

The hypothalamus contains nuclei and cell populations that are critical in reproduction and that differ significantly between the sexes in structure and function. To examine the molecular and genetic basis for these differences, we quantified gene expression in the hypothalamus of 39 pairs of adult male and female mice belonging to the BXD strains. This experimental design enabled us to define hypothalamic gene coexpression networks and provided robust estimates of absolute expression differences. As expected, sex has the strongest effect on the expression of genes on the X and Y chromosomes (e.g., Uty, Xist, Kdm6a). Transcripts associated with the endocrine system and neuropeptide signaling also differ significantly. Sex-differentiated transcripts often have well delimited expression within specific hypothalamic nuclei that have roles in reproduction. For instance, the estrogen receptor (Esr1) and neurokinin B (Tac2) genes have intense expression in the medial preoptic and arcuate nuclei and comparatively high expression in females. Despite the strong effect of sex on single transcripts, the global pattern of covariance among transcripts is well preserved, and consequently, males and females have well matched coexpression modules. However, there are sex-specific hub genes in functionally equivalent modules. For example, only in males is the Y-linked gene, Uty, a highly connected transcript in a network that regulates chromatin modification and gene transcription. In females, the X chromosome paralog, Kdm6a, takes the place of Uty in the same network. We also find significant effect of sex on genetic regulation and the same network in males and females can be associated with markedly different regulatory loci. With the exception of a few sex-specific modules, our analysis reveals a system in which sets of functionally related transcripts are organized into stable sex-independent networks that are controlled at a higher level by sex-specific modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA