Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Med Rep ; 30(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39219269

RESUMO

Tyrosine kinase inhibitors (TKIs) offer targeted therapy for cancers but can cause severe cardiotoxicities. Determining their dose­dependent impact on cardiac function is required to optimize therapy and minimize adverse effects. The dose­dependent cardiotoxic effects of two TKIs, imatinib and ponatinib, were assessed in vitro using H9c2 cardiomyoblasts and in vivo using zebrafish embryos. In vitro, H9c2 cardiomyocyte viability, apoptosis, size, and surface area were evaluated to assess the impact on cellular health. In vivo, zebrafish embryos were analyzed for heart rate, blood flow velocity, and morphological malformations to determine functional and structural changes. Additionally, reverse transcription­quantitative PCR (RT­qPCR) was employed to measure the gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), established markers of cardiac injury. This comprehensive approach, utilizing both in vitro and in vivo models alongside functional and molecular analyses, provides a robust assessment of the potential cardiotoxic effects. TKI exposure decreased viability and surface area in H9c2 cells in a dose­dependent manner. Similarly, zebrafish embryos exposed to TKIs exhibited dose­dependent heart malformation. Both TKIs upregulated ANP and BNP expression, indicating heart injury. The present study demonstrated dose­dependent cardiotoxic effects of imatinib and ponatinib in H9c2 cells and zebrafish models. These findings emphasize the importance of tailoring TKI dosage to minimize cardiac risks while maintaining therapeutic efficacy. Future research should explore the underlying mechanisms and potential mitigation strategies of TKI­induced cardiotoxicities.


Assuntos
Cardiotoxicidade , Mesilato de Imatinib , Imidazóis , Miócitos Cardíacos , Piridazinas , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Imidazóis/toxicidade , Piridazinas/efeitos adversos , Piridazinas/farmacologia , Piridazinas/toxicidade , Mesilato de Imatinib/toxicidade , Mesilato de Imatinib/efeitos adversos , Mesilato de Imatinib/farmacologia , Cardiotoxicidade/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Encefálico/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37725271

RESUMO

Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.

4.
Cancers (Basel) ; 15(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190124

RESUMO

Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.

5.
Beilstein J Nanotechnol ; 14: 240-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865093

RESUMO

Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.

7.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328458

RESUMO

Single-cell RNA sequencing (RNA-seq) techniques can perform analysis of transcriptome at the single-cell level and possess an unprecedented potential for exploring signatures involved in tumor development and progression. These techniques can perform sequence analysis of transcripts with a better resolution that could increase understanding of the cellular diversity found in the tumor microenvironment and how the cells interact with each other in complex heterogeneous cancerous tissues. Identifying the changes occurring in the genome and transcriptome in the spatial context is considered to increase knowledge of molecular factors fueling cancers. It may help develop better monitoring strategies and innovative approaches for cancer treatment. Recently, there has been a growing trend in the integration of RNA-seq techniques with contemporary omics technologies to study the tumor microenvironment. There has been a realization that this area of research has a huge scope of application in translational research. This review article presents an overview of various types of single-cell RNA-seq techniques used currently for analysis of cancer tissues, their pros and cons in bulk profiling of transcriptome, and recent advances in the techniques in exploring heterogeneity of various types of cancer tissues. Furthermore, we have highlighted the integration of single-cell RNA-seq techniques with other omics technologies for analysis of transcriptome in their spatial context, which is considered to revolutionize the understanding of tumor microenvironment.


Assuntos
Neoplasias , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Análise de Sequência de RNA , Análise de Célula Única/métodos , Microambiente Tumoral/genética
8.
Pharm Dev Technol ; 26(4): 490-500, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33416013

RESUMO

Breast cancer is one of the leading causes of brain metastasis. Metastasis to the brain occurs if cancer cells manage to traverse the 'blood-brain barrier' (BBB), which is a barrier with a very tight junction (TJ) of endothelial cells between blood circulation and brain tissue. It is highly important to develop novel in vitro BBB models to investigate breast cancer metastasis to the brain to facilitate the screening of chemotherapeutic agents against it. We herein report the development of gelatin methacryloyl (GelMA) modified transwell insert based BBB model composed of endothelial and astrocyte cell layers for testing the efficacy of anti-metastatic agents against breast cancer metastasis to the brain. We characterized the developed model for the morphology and in vitro breast cancer cell migration. Furthermore, we investigated the effect of cisplatin, a widely used chemotherapeutic agent, on the migration of metastatic breast cancer cells using the model. Our results showed that breast cancer cells migrate across the developed BBB model. Cisplatin treatment inhibited the migration of cancer cells across the model. Findings of this study suggest that our BBB model can be used as a suitable tool to investigate breast cancer-associated brain metastasis and to identify suitable therapeutic agents against this.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias da Mama/patologia , Gelatina/química , Metacrilatos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Cisplatino/farmacologia , Feminino , Humanos , Hidrogéis , Técnicas In Vitro
9.
J Pharm Pharmacol ; 72(11): 1536-1545, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32667058

RESUMO

OBJECTIVE: Cisplatin is a standard treatment approach against lung adenocarcinoma. Resistance to cisplatin and the toxic side effects of cisplatin continue to remain a challenge. Combining drugs with different mechanisms is being investigated as a means to overcome these challenges. In ovarian cancer cells, the knockdown of RSK2 increased the sensitivity of cisplatin. RSK is a downstream mediator of the MAPK pathway that is responsible for cell survival, proliferation and migration. METHODS: Our study examined the effect of cisplatin, BI-D1870 (RSK inhibitor) or their combination on cell migration, apoptosis, autophagy and cell cycle in A549 human lung adenocarcinoma cells. KEY FINDINGS: The combination of cisplatin and BI-D1870 potentiated the antimigration rate, the activation of caspases-3 and was associated with a significant decrease in RSK1 and ERK expression when compared to cisplatin alone. The combination of cisplatin and BI-D1870 also resulted in the inhibition of LC3 II to LC3 I expression when compared to BI-D1870. The combination of cisplatin and BI-D1870 increased the number of cells in the G2/M-phase when compared to cisplatin alone. CONCLUSIONS: These findings suggest that combining cisplatin with agents that target the RSK mediated cell survival pathway, may potentiate the cisplatin effect in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Terapia de Alvo Molecular , Invasividade Neoplásica , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
10.
Mar Drugs ; 18(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276401

RESUMO

Lung cancer is one of the major causes of death worldwide. Natural molecules with anti-lung cancer potential are of a great interest and considered as very promising alternative to substitute or enhance the efficiency of the conventional drugs. Recently, algae as source of high value-added compounds are considered as very promising source of these bioactive molecules. These are secondary metabolites that consist mainly of derivatives of peptides, carbohydrates, and lipids with various structures. Accordingly, various mechanisms by which different algae molecules demonstrate attenuation of tumor angiogenesis were stated and discussed. The mode of action of the algae bioactives is closely related to their nature and chemical structure. Furthermore, this literature review considers the synergistic effect between microalgae bioactives and conventional drugs and discuss the economic feasibility of producing microalgae bioactives at large scale to conclude with some future perspectives related to algae-based drug discovery.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Carboidratos/farmacologia , Descoberta de Drogas , Humanos , Lipídeos/farmacologia , Microalgas/química , Peptídeos/farmacologia , Compostos Fitoquímicos/química , Alga Marinha/química
11.
Pharmacogenomics J ; 20(2): 277-284, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31653973

RESUMO

The objective of this study is to estimate the prevalence of VKORC1, CYP2C9, and CYP4F2 genetic variants and their contribution to warfarin dose variability in Qataris. One hundred and fifty warfarin-treated Qatari patients on a stable dose and with a therapeutic INR for at least three consecutive clinic visits were recruited. Saliva samples were collected using Oragene DNA self-collection kit, followed by DNA purification and genotyping via TaqMan Real-Time-PCR assay. The population was stratified into derivation and validation cohorts for the dosing model. The minor allele frequency (MAF) of VKORC1 (-1639G>A) was A (0.47), while the MAF's for the CYP2C9*2 and *3 and CYP4F2*3 were T (0.12), C (0.04) and T (0.43), respectively. Carriers of at least one CYP2C9 decreased function allele (*2 or *3) required lower median (IQR) warfarin doses compared to noncarriers [24.5 (14.5) mg/week vs. 35 (21) mg/week, p < 0.001]. Similarly, carriers of each additional copy of (A) variant in VKORC1 (-1639G>A) led to reduction in warfarin dose requirement compared to noncarriers [21(7.5) vs. 31.5(18.7) vs. 43.7(15), p < 0.0001]. CYP4F2*3 polymorphism on the other hand was not associated with warfarin dose. Multivariate analysis on the derivation cohort (n = 104) showed that a dosing model consisting of hypertension (HTN), heart failure (HF), VKORC1 (-1639G>A), CYP2C9*2 & *3, and smoking could explain 39.2% of warfarin dose variability in Qataris (P < 0.001). In the validation cohort (n = 45), correlation between predicted and actual warfarin doses was moderate (Spearman's rho correlation coefficient = 0.711, p < 0.001). This study concluded that VKORC1 (-1639G>A), CYP2C9*2 & *3 are the most significant predictors of warfarin dose along with HTN, HF and smoking.


Assuntos
Anticoagulantes/administração & dosagem , Citocromo P-450 CYP2C9/genética , Vigilância da População , Vitamina K Epóxido Redutases/genética , Varfarina/administração & dosagem , Idoso , Estudos de Coortes , Estudos Transversais , Relação Dose-Resposta a Droga , Feminino , Cardiopatias/tratamento farmacológico , Cardiopatias/epidemiologia , Cardiopatias/genética , Humanos , Masculino , Pessoa de Meia-Idade , Catar/epidemiologia , Fumar/epidemiologia , Fumar/genética
12.
PLoS One ; 14(8): e0221318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465475

RESUMO

Syzygium cumini (S. cumini) is an evergreen tropical plant that is well recognized for its therapeutic potential of common diseases. In this study, the therapeutic potential and biomedical application of S. cumini are assessed in vitro and in vivo to find its effectiveness for different complications. The methanolic crude extract of S. cumini leaves were screened for total phenolic and flavonoid content. In vitro, the DPPH scavenging assay, XTT assay, prothrombin and activated partial thromboplastin time were used to assess antioxidant, cytoprotective and thrombolytic activity of the S. cumini extract, respectively. The anti-inflammatory potential and the analgesic activity of the S. cumini extract were analyzed in rabbits by the Carrageenan induced paw edema method and the writhing method, respectively. Phytochemical analysis showed the presence of considerable amounts of total phenolic (369.75 ± 17.9 mg GAE/g) and flavonoid (75.8 ± 5.3 mgRE/g) content in the S. cumini extract. The DPPH assay demonstrated a higher antioxidant potential (IC-50 value of 133 µg/ml), which was comparable to the IC-50 of ascorbic acid (122.4 µg/ml). Moreover, the S. cumini extract showed a dose dependent cytoprotective effect against H2O2 treated bone marrow mesenchymal stem cells (BM-MSCs). S. cumini also possesses significant anticoagulant activity with a prothrombin time of 28.3 ± 1.8 seconds vs 15.8 ± 0.2 seconds of control, p<0.05. The leaf extract also demonstrated an analgesic effect in rabbits as indicated by the decrease in writhing (12.2 ± 1.7 control vs. 3.7 ± 0.6 treated) and anti-inflammatory activity in rabbits paw with a protection against inflammation of 64.1 ± 2.4%. Our findings suggest that the methanolic extract of S. cumini leaves has antioxidant, cytoprotective, anticoagulant, analgesic and anti-inflammatory properties, and therefore, can be applied for treating cardiovascular diseases and cancers.


Assuntos
Analgésicos , Anti-Inflamatórios , Antioxidantes , Edema/tratamento farmacológico , Fenóis , Extratos Vegetais , Folhas de Planta/química , Syzygium/química , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Carragenina/toxicidade , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Flavonoides/química , Flavonoides/farmacologia , Humanos , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Leuk Lymphoma ; 60(3): 782-794, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30187808

RESUMO

Sanguinarine (Sang), a plant-derived compound isolated from the roots of Sanguinaria canadensis was evaluated for its potential pro-apoptotic effects in precursor B acute lymphoblastic leukemia (Pre-ALL) cell lines. Treatment of 697, REH, RS4;11, and SupB15 cell lines with Sang exhibited significant inhibition of cell viability via induction of apoptotic cell death. Sang-mediated apoptosis was found to be associated with the increased expression of proapoptotic bax with concomitant decrease of Bcl-2 expression leading to depolarization of mitochondria membrane resulting in loss of mitochondrial membrane potential (MMP). The reduced MMP caused the leakage in mitochondrial membrane and release of cytochrome c into the cytosol. The cytochrome c then mediates the activation of caspase-cascade and subsequently PARP cleavage. Furthermore, pretreatment with z-VAD-FMK, a pan-caspase inhibitor, abrogated Sang-induced inhibition of cell viability, induction of apoptosis. Sang treatment also reduced the phosphorylation of AKT and suppressed the expression of a number of anti-apoptotic genes such as cIAP1, cIAP2, and XIAP. Sang mediates its anti-cancer activity by generation of reactive oxygen species (ROS) due to depletion of glutathione level in leukemic cell lines. Pretreatment of these cells with N-acetyl cysteine (NAC) prevented Sang-induced depletion of glutathione level and mitochondrial-caspase-induced apoptosis. Finally, Sang treatment of Pre-ALL cell suppressed colony formation ability of these cells suggesting Sang has an anti-leukemic potential. Altogether, our data suggest that Sang is an efficient inducer of intrinsic apoptotic cell death via generation of ROS and exhibition of anti-leukemic effect in Pre-ALL cells raises the possibility to develop Sang as a therapeutic modality for the treatment and management of Pre-ALL.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Front Oncol ; 8: 399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333956

RESUMO

S-phase kinase-associated protein2 (Skp2), a proto-oncoprotein, plays an important role in development and progression of human malignancies. Skp2 is frequently overexpressed in many human malignancies. It targets cell cycle progression through ubiquitin mediated degradation of G1-checkpoint CDK inhibitors-p21 (CDKN1A) and p27 (CDKN1B). We investigated the role of Skp2 and its ubiquitin-proteasome pathway in head and neck squamous cell carcinoma (HNSCC) using a panel of cell lines with and without human papillomavirus (HPV+, HPV-). Treatment of HNSCC cell lines with curcumin, a natural compound isolated from rhizomes of the plant Curcuma longa, or transfection of small interfering RNA of Skp2, causes down-regulation of Skp2 with concomitant accumulation of p21 and p27 in HPV+, HPV- cells. Furthermore curcumin inhibits cell viability and induces apoptosis in a dose-dependent manner. Treatment of HPV+ and HPV- cells with curcumin induced apoptosis via mitochondrial pathway and activation of caspases. In addition, treatment of HPV+ and HPV- cell lines with curcumin down-regulated the expression of XIAP, cIAP1, and cIAP2. Interestingly, co-treatment of HNSCC cells with curcumin and cisplatin potentiated inhibition of cell viability and apoptotic effects. Altogether, these data suggest an important function for curcumin, acting as a suppressor of oncoprotein Skp2 in squamous cell carcinoma cells in both HPV+ and HPV- cells; raise the possibility that this agent may have a future therapeutic role in squamous cell carcinoma.

15.
Biomed Res Int ; 2018: 1642684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363733

RESUMO

Over the last decade, the zebrafish (Danio rerio) has emerged as a model organism for cardiovascular research. Zebrafish have several advantages over mammalian models. For instance, the experimental cost of using zebrafish is comparatively low; the embryos are transparent, develop externally, and have high fecundity making them suitable for large-scale genetic screening. More recently, zebrafish embryos have been used for the screening of a variety of toxic agents, particularly for cardiotoxicity testing. Zebrafish has been shown to exhibit physiological responses that are similar to mammals after exposure to medicinal drugs including xenobiotics, hormones, cancer drugs, and also environmental pollutants, including pesticides and heavy metals. In this review, we provided a summary for recent studies that have used zebrafish to investigate the molecular mechanisms of drug-induced cardiotoxicity. More specifically, we focused on the techniques that were exploited by us and others for cardiovascular toxicity assessment and described several microscopic imaging and analysis protocols that are being used for the estimation of a variety of cardiac hemodynamic parameters.


Assuntos
Cardiotoxicidade/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Preparações Farmacêuticas/administração & dosagem , Peixe-Zebra/fisiologia , Animais , Hemodinâmica/fisiologia , Humanos
16.
Life Sci ; 209: 197-201, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089233

RESUMO

Cardiac remodeling, characterized by excessive extracellular matrix (ECM) remodeling, predisposes the heart to failure if left unresolved. Understanding the signaling mechanisms involved in excessive extracellular matrix (ECM) remodeling is necessary to identify the means to regress the development of cardiac remodeling and heart failure. Recently, hyaluronan (HA), a ubiquitously expressed glycosaminoglycan in the ECM, was shown to participate in tissue fibrosis and myofibroblast proliferation through interacting with its ubiquitously expressed cell-surface receptor, CD44. CD44 is a multifunctional transmembrane glycoprotein that serves as a cell-surface receptor for a number of ECM proteins. The mechanism by which the interaction between CD44-HA contributes to ECM and cardiac remodeling remains unknown. A previous study performed on a non-cardiac model showed that CD44-HA enhances Na+/H+ exchanger isoform-1 (NHE1) activity, causing ECM remodeling, HA metabolism and tumor invasion. Interestingly, NHE1 has been demonstrated to be involved in cardiac remodeling and myocardial fibrosis. In addition, it has previously been demonstrated that CD44 is upregulated in transgenic mouse hearts expressing active NHE-1. The role of CD44, HA and NHE1 and the cellular interplay of these factors in the ECM and cardiac remodeling is the focus of this review.


Assuntos
Remodelamento Atrial , Insuficiência Cardíaca/fisiopatologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Miócitos Cardíacos/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Remodelação Ventricular , Humanos , Miócitos Cardíacos/citologia , Transdução de Sinais
17.
J Transl Med ; 16(1): 96, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642900

RESUMO

Cisplatin is a widely used chemotherapeutic agent for treatment of various cancers. However, treatment with cisplatin is associated with drug resistance and several adverse side effects such as nephrotoxicity, reduced immunity towards infections and hearing loss. A Combination of cisplatin with other drugs is an approach to overcome drug resistance and reduce toxicity. The combination therapy also results in increased sensitivity of cisplatin towards cancer cells. The mitogen activated protein kinase (MAPK) pathway in the cell, consisting of extracellular signal regulated kinase, c-Jun N-terminal kinase, p38 kinases, and downstream mediator p90 ribosomal s6 kinase (RSK); is responsible for the regulation of various cellular events including cell survival, cell proliferation, cell cycle progression, cell migration and protein translation. This review article demonstrates the role of MAPK pathway in cisplatin based therapy, illustrates different combination therapy involving cisplatin and also shows the importance of targeting MAPK family, particularly RSK, to achieve increased anticancer effect and overcome drug resistance when combined with cisplatin.


Assuntos
Cisplatino/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular
18.
Future Med Chem ; 9(9): 933-950, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636454

RESUMO

Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/química , Benzofenantridinas/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
19.
J Cell Physiol ; 232(12): 3244-3250, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28255990

RESUMO

Cardiac hypertrophy (CH), characterized by the enlargement of cardiomyocytes, fibrosis and apoptosis, is one of the leading causes of death worldwide. Despite the advances in cardiovascular research, there remains a need to further investigate the signaling pathways that mediate CH in order to identify novel therapeutic targets. One of the hallmarks of CH is the remodeling of the extracellular matrix (ECM). Multiple studies have shown an important role of cysteine proteases and matrix metalloproteinases (MMPs) in the remodeled heart. This review focuses on the role of cysteine cathepins and MMPs in cardiac remodeling.


Assuntos
Miocárdio/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Matriz Extracelular/metabolismo , Humanos , Hipertensão/metabolismo , Metaloproteinases da Matriz/metabolismo , Remodelação Ventricular
20.
Mol Cell Biochem ; 418(1-2): 21-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27236820

RESUMO

p90 ribosomal S6 kinase (p90RSK) constitutes a family of serine/threonine kinases that have been shown to be involved in cell proliferation of various malignancies via direct or indirect effects on the cell-cycle machinery. We investigated the role of p90RSK in lung adenocarcinomas and whether the inhibition of p90RSK diminishes cancer progression. Moreover, we investigated the involvement of glycogen synthase kinase-3ß (GSK-3ß) and osteopontin (OPN) in the p90RSK-induced lung adenocarcinoma progression. p90RSK, OPN, and GSK-3ß protein expressions were examined in the A549 human lung adenocarcinoma cell line in the presence and absence of BI-D1870 (BID), a p90RSK inhibitor. Gene expression of anti-apoptotic and pro-apoptotic markers namely Bcl2 and Bax, respectively, were studied by reverse transcription polymerase chain reaction. In addition, the A549 lung adenocarcinoma cell line was characterized for cell proliferation using the MTT assay and cell migration using the scratch migration assay. Our study revealed that total RSK1 protein expression is over expressed in the A549 human lung adenocarcinoma cell line, an effect which is significantly reduced upon pretreatment with BID (69.32 ± 12.41 % of control; P < 0.05). The inhibition of p90RSK also showed a significant suppression of cell proliferation (54.3 ± 6.73 % of control; P < 0.01) and cell migration (187.90 ± 16.10 % of control; P < 0.01). Treatment of the A549 cells with BID regressed the expression of Bcl2 mRNA (56.92 ± 6.07 % of control; P < 0.01). BID also regressed protein expression of OPN (79.57 ± 5.32 % of control; P < 0.05) and phospho-GSK-3ß (73.04 ± 8.95 % of control; P < 0.05). The p90RSK has an essential role in promoting tumor growth and proliferation in non-small cell lung cancer (NSCLC). BID may serve as an alternative cancer treatment in NSCLC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/biossíntese , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Osteopontina/biossíntese , Pteridinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Osteopontina/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA