Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(19): 4352-4362, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047170

RESUMO

PURPOSE: Avelumab (anti-PD-L1) became the first approved treatment for metastatic Merkel cell carcinoma (mMCC) based on results from the phase II JAVELIN Merkel 200 trial. In this study, we report exploratory biomarker analyses from the trial. PATIENTS AND METHODS: Patients with mMCC (n = 88) with or without prior first-line chemotherapy received avelumab 10 mg/kg every 2 weeks. We conducted analyses on somatic mutations, mutational signatures, and tumor mutational burden using paired whole-exome sequencing. Additionally, we examined gene and gene set expression, immune content from RNA sequencing profiles, as well as tumor PD-L1 and CD8 statuses from IHC and CD8 status from digital pathology. RESULTS: Tumors positive for Merkel cell polyomavirus (MCPyV) were characterized by an absence of driver mutations and a low tumor mutational burden, consistent with previous studies. A novel MCPyV-specific host gene expression signature was identified. MCPyV+ tumors had increased levels of immunosuppressive M2 macrophages in the tumor microenvironment, which seemed to correlate with PD-L1 expression; high CD8+ T-cell density in these tumors did not predict response to avelumab. Conversely, in patients with MCPyV- tumors, higher CD8+ T-cell density seemed to be associated with response to avelumab. Mutations in several genes were associated with treatment outcomes. Compared with tumors sampled before chemotherapy, tumors sampled after chemotherapy had downregulated gene signatures for immune responses, including reduced expression of IFNγ-related pathways. Levels of activated dendritic cells in responding patients were higher in patients assessed after versus before chemotherapy. CONCLUSIONS: Exploratory analyses provide insights into mMCC biology and potential associations with response to avelumab. Chemotherapy seems to negatively modulate the immune microenvironment.


Assuntos
Anticorpos Monoclonais Humanizados , Biomarcadores Tumorais , Carcinoma de Célula de Merkel , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais/genética , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Mutação , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Idoso de 80 Anos ou mais , Poliomavírus das Células de Merkel , Sequenciamento do Exoma , Resultado do Tratamento , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia
2.
Cancer Med ; 13(12): e7411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924353

RESUMO

BACKGROUND: Avelumab first-line (1 L) maintenance is a standard of care for advanced urothelial carcinoma (aUC) based on the JAVELIN Bladder 100 phase 3 trial, which showed that avelumab 1 L maintenance + best supportive care (BSC) significantly prolonged overall survival (OS) and progression-free survival (PFS) vs BSC alone in patients who were progression free after receiving 1 L platinum-containing chemotherapy. Here, we comprehensively screened JAVELIN Bladder 100 trial datasets to identify prognostic factors that define subpopulations of patients with longer or shorter OS irrespective of treatment, and predictive factors that select patients who could obtain a greater OS benefit from avelumab 1 L maintenance treatment. METHODS: We performed machine learning analyses to screen a large set of baseline covariates, including patient demographics, disease characteristics, laboratory values, molecular biomarkers, and patient-reported outcomes. Covariates were identified from previously reported analyses and established prognostic and predictive markers. Variables selected from random survival forest models were processed further in univariate Cox models with treatment interaction and visually inspected using correlation analysis and Kaplan-Meier curves. Results were summarized in a multivariable Cox model. RESULTS: Prognostic baseline covariates associated with OS included in the final model were assignment to avelumab 1 L maintenance treatment, Eastern Cooperative Oncology Group performance status, site of metastasis, sum of longest target lesion diameters, levels of C-reactive protein and alkaline phosphatase in blood, lymphocyte proportion in intratumoral stroma, tumor mutational burden, and tumor CD8+ T-cell infiltration. Potential predictive factors included site of metastasis, tumor mutation burden, and tumor CD8+ T-cell infiltration. An analysis in patients with PD-L1+ tumors had similar findings to those in the overall population. CONCLUSIONS: Machine learning analyses of data from the JAVELIN Bladder 100 trial identified potential prognostic and predictive factors for avelumab 1 L maintenance treatment in patients with aUC, which warrant further evaluation in other clinical datasets.


Assuntos
Anticorpos Monoclonais Humanizados , Aprendizado de Máquina , Neoplasias da Bexiga Urinária , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Feminino , Prognóstico , Idoso , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Pessoa de Meia-Idade , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/mortalidade , Carcinoma de Células de Transição/patologia , Quimioterapia de Manutenção/métodos , Antineoplásicos Imunológicos/uso terapêutico , Intervalo Livre de Progressão , Biomarcadores Tumorais
3.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 143-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087967

RESUMO

This analysis aimed to quantify tumor dynamics in patients receiving either bintrafusp alfa (BA) or pembrolizumab, by population pharmacokinetic (PK)-pharmacodynamic modeling, and investigate clinical and molecular covariates describing the variability in tumor dynamics by pharmacometric and machine-learning (ML) approaches. Data originated from two clinical trials in patients with biliary tract cancer (BTC; NCT03833661) receiving BA and non-small cell lung cancer (NSCLC; NCT03631706) receiving BA or pembrolizumab. Individual drug exposure was estimated from previously developed population PK models. Population tumor dynamics models were developed for each drug-indication combination, and covariate evaluations performed using nonlinear mixed-effects modeling (NLME) and ML (elastic net and random forest models) approaches. The three tumor dynamics' model structures all included linear tumor growth components and exponential tumor shrinkage. The final BTC model included the effect of drug exposure (area under the curve) and several covariates (demographics, disease-related, and genetic mutations). Drug exposure was not significant in either of the NSCLC models, which included two, disease-related, covariates in the BA arm, and none in the pembrolizumab arm. The covariates identified by univariable NLME and ML highly overlapped in BTC but showed less agreement in NSCLC analyses. Hyperprogression could be identified by higher tumor growth and lower tumor kill rates and could not be related to BA exposure. Tumor size over time was quantitatively characterized in two tumor types and under two treatments. Factors potentially related to tumor dynamics were assessed using NLME and ML approaches; however, their net impact on tumor size was considered as not clinically relevant.


Assuntos
Neoplasias do Sistema Biliar , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias do Sistema Biliar/tratamento farmacológico
4.
J Pathol Inform ; 14: 100301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994311

RESUMO

The success of immuno-oncology treatments promises long-term cancer remission for an increasing number of patients. The response to checkpoint inhibitor drugs has shown a correlation with the presence of immune cells in the tumor and tumor microenvironment. An in-depth understanding of the spatial localization of immune cells is therefore critical for understanding the tumor's immune landscape and predicting drug response. Computer-aided systems are well suited for efficiently quantifying immune cells in their spatial context. Conventional image analysis approaches are often based on color features and therefore require a high level of manual interaction. More robust image analysis methods based on deep learning are expected to decrease this reliance on human interaction and improve the reproducibility of immune cell scoring. However, these methods require sufficient training data and previous work has reported low robustness of these algorithms when they are tested on out-of-distribution data from different pathology labs or samples from different organs. In this work, we used a new image analysis pipeline to explicitly evaluate the robustness of marker-labeled lymphocyte quantification algorithms depending on the number of training samples before and after being transferred to a new tumor indication. For these experiments, we adapted the RetinaNet architecture for the task of T-lymphocyte detection and employed transfer learning to bridge the domain gap between tumor indications and reduce the annotation costs for unseen domains. On our test set, we achieved human-level performance for almost all tumor indications with an average precision of 0.74 in-domain and 0.72-0.74 cross-domain. From our results, we derive recommendations for model development regarding annotation extent, training sample selection, and label extraction for the development of robust algorithms for immune cell scoring. By extending the task of marker-labeled lymphocyte quantification to a multi-class detection task, the pre-requisite for subsequent analyses, e.g., distinguishing lymphocytes in the tumor stroma from tumor-infiltrating lymphocytes, is met.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA