Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501095

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease that serves as a common pathogenic underpinning for various cardiovascular diseases. Although high circulating branched-chain amino acid (BCAA) levels may represent a risk factor for AS, it is unclear whether dietary BCAA supplementation causes elevated levels of circulating BCAAs and hence influences AS, and the related mechanisms are not well understood. Here, ApoE-deficient mice (ApoE-/-) were fed a diet supplemented with or without BCAAs to investigate the effects of BCAAs on AS and determine potential related mechanisms. In this study, compared with the high-fat diet (HFD), high-fat diet supplemented with BCAAs (HFB) reduced the atherosclerotic lesion area and caused a significant decrease in serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. BCAA supplementation suppressed the systemic inflammatory response by reducing macrophage infiltration; lowering serum levels of inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6); and suppressing inflammatory related signaling pathways. Furthermore, BCAA supplementation altered the gut bacterial beta diversity and composition, especially reducing harmful bacteria and increasing probiotic bacteria, along with increasing bile acid (BA) excretion. In addition, the levels of total BAs, primary BAs, 12α-hydroxylated bile acids (12α-OH BAs) and non-12α-hydroxylated bile acids (non-12α-OH BAs) in cecal and colonic contents were increased in the HFB group of mice compared with the HFD group. Overall, these data indicate that dietary BCAA supplementation can attenuate atherosclerosis induced by HFD in ApoE-/- mice through improved dyslipidemia and inflammation, mechanisms involving the intestinal microbiota, and promotion of BA excretion.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos e Sais Biliares , Colesterol , Administração Oral , Camundongos Endogâmicos C57BL
2.
Nutr Metab Cardiovasc Dis ; 32(1): 186-194, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906414

RESUMO

BACKGROUND AND AIMS: Serum concentrations of glutamate (Glu), Glutamine (Gln) and Gln/Glu ratio have consistently been reported to be associated with metabolic disorders and diabetes. The aim of this study was to examine the relationship between these metabolites with the presence of coronary artery disease (CAD) and CAD severity in Chinese patients. METHODS AND RESULTS: 2970 Chinese patients undergoing coronary angiography (CAG) in Beijing Hospital were enrolled. Baseline demographics and medical history data was recorded by questionnaires. Serum Glu and Gln concentrations were analyzed by isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Statistical analysis showed that CAD patients had significantly higher levels of Glu and lower Gln/Glu ratios compared with non-CAD control group. Glu was significantly positively associated with body mass index (BMI), fasting blood glucose (FBG), triglycerides (TG), creatinine (Crea), and uric acid (UA), and negatively associated with high-density lipoprotein cholesterol (HDL-C), while inverse associations between Gln/Glu ratio and these risk factors were observed. Glu levels increased and Gln/Glu decreased with the increase of CAD severity as represented by either the number of stenosed vessels or the Gensini scores. Logistic regression analysis demonstrated that, after adjusting for smoking status, obesity or overweight, hypertension, dyslipidemia, diabetes, stroke and family history of premature CAD, high Glu level and low Gln/Glu ratio were positively associated with CAG defined CAD as well as CAD severity expressed by Gensini score. CONCLUSIONS: We identified Glu and Gln/Glu ratio independently associated with CAG defined CAD as well as CAD severity in Chinese patients undergoing CAG.


Assuntos
Doença da Artéria Coronariana , Glutamina , Cromatografia Líquida , Angiografia Coronária , Ácido Glutâmico , Humanos , Fatores de Risco , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem
3.
J Immunol Res ; 2021: 1815098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307691

RESUMO

Adiponectin is a small peptide secreted and a key component of the endocrine system and immune system. Although globular adiponectin protects myocardial ischemia/reperfusion-induced cardiomyocyte injury, the protective mechanisms remain largely unresolved. Using a neonatal rat ventricular myocyte hypoxia/reoxygenation model, we investigated the role of its potential mechanisms of necroptosis in globular adiponectin-mediated protection in hypoxia/reoxygenation-induced cardiomyocyte injury as compared to apoptosis. We found that globular adiponectin treatment attenuated cardiomyocyte injury as indicated by increased cell viability and reduced lactate dehydrogenase release following hypoxia/reoxygenation. Immunofluorescence staining and Western blotting demonstrated that both necroptosis and apoptosis were triggered by hypoxia/reoxygenation and diminished by globular adiponectin. Necrostatin-1 (RIP1-specific inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) only mimicked the inhibition of necroptosis and apoptosis, respectively, by globular adiponectin in hypoxia/reoxygenation-treated cardiomyocytes. Globular adiponectin attenuated reactive oxygen species production, oxidative damage, and p38MAPK and NF-κB signaling, all important for necroptosis and apoptosis. Collectively, our study suggests that globular adiponectin inhibits hypoxia/reoxygenation-induced necroptosis and apoptosis in cardiomyocytes probably by reducing oxidative stress and interrupting p38MAPK signaling.


Assuntos
Adiponectina/metabolismo , Traumatismo por Reperfusão Miocárdica/imunologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , Apoptose/imunologia , Hipóxia Celular/imunologia , Sobrevivência Celular , Células Cultivadas , Meios de Cultura/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/imunologia , Necroptose/imunologia , Estresse Oxidativo/imunologia , Gravidez , Cultura Primária de Células , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Free Radic Biol Med ; 129: 202-214, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218773

RESUMO

The transplanted liver inevitably suffers from ischemia reperfusion (I/R) injury, which represents a key issue in clinical transplantation determining early outcome and long-term graft survival. A solution is needed to deal with this insult. This study was undertaken to explore the effect of Caffeic acid (CA), a naturally occurring antioxidant, on I/R injury of grafted liver and the mechanisms involved. Male Sprague-Dawley rats underwent orthotopic liver transplantation (LT) in the absence or presence of CA administration. In vitro, HL7702 cells were subjected to hypoxia/reoxygenation. LT led to apparent hepatic I/R injury, manifested by deteriorated liver function, microcirculatory disturbance and increased apoptosis, along with increased PDIA3 expression and nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase activity, and membrane translocation of NADPH oxidase subunits. Treatment with CA attenuated the above alterations. siRNA/shRNA-mediated knockdown of PDIA3 in HL7702 cells and rats played the same role as CA not only in inhibiting ROS production and NADPH oxidase activity, but also in alleviating hepatocytes injury. CA protects transplanted livers from injury, which is likely attributed to its protection of oxidative damage by interfering in PDIA3-dependent activation of NADPH oxidase.


Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Transplante de Fígado , NADPH Oxidases/genética , Isomerases de Dissulfetos de Proteínas/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Ácidos Cafeicos/isolamento & purificação , Hipóxia Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , NADPH Oxidases/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Salvia miltiorrhiza/química , Transdução de Sinais , Transplante Homólogo
5.
J Ethnopharmacol ; 208: 24-35, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28648927

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Silibinin Capsules (SC) is a silybin-phospholipid complex with silybin as the bioactive component. Silybin accounts for 50-70% of the seed extract of Silybum marianum (L.) Gaertn.. As a traditional medicine, silybin has been used for treatment of liver diseases and is known to provide a wide range of hepatoprotective effects. AIM OF THE STUDY: High fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) is a worldwide health problem. This study was to investigate the role of SC in NAFLD with focusing on its underlying mechanism and likely target. MATERIALS AND METHODS: Male hamsters (Cricetidae) received HFD for 10 weeks to establish NAFLD model. NAFLD was assessed by biochemical assays, histology and immunohistochemistry. Proton nuclear magnetic resonance spectroscopy and western blot were conducted to gain insight into the mechanism. RESULTS: Hamsters fed HFD for 10 weeks developed fatty liver accompanying with increased triglyceride (TG) accumulation, enhancing de novo lipogenesis, increase in fatty acid (FA) uptake and reducing FA oxidation and TG lipolysis, as well as a decrease in the expression of phospho-adenosine monophosphate activated protein kinase α (p-AMPKα) and Sirt 1. SC treatment at 50mg/kg silybin and 100mg/kg silybin for 8 weeks protected hamsters from development of fatty liver, reducing de novo lipogenesis and increasing FA oxidation and p-AMPKα expression, while having no effect on FA uptake and TG lipolysis. CONCLUSIONS: SC protected against NAFLD in hamsters by inhibition of de novo lipogenesis and promotion of FA oxidation, which was likely mediated by activation of AMPKα.


Assuntos
Antioxidantes/uso terapêutico , Ácidos Graxos/metabolismo , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Silimarina/uso terapêutico , Alanina Transaminase/sangue , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Cápsulas , Cricetinae , Dieta Hiperlipídica , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Silibina , Silimarina/farmacologia , Triglicerídeos/metabolismo
6.
Sci Rep ; 7: 41832, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150820

RESUMO

Dysfunction of energy metabolism is involved in inflammatory bowel disease (IBD). This study was designed to investigate the potential of astragaloside IV (ASIV), an active ingredient of Radix Astragalus, to ameliorate colonic mucosal injury, with focusing on the implication of energy restoration in the underlying mechanism. Experimental colitis model was established in rats by injecting 2,4,6-trinitrobenzene sulfonic acid (TNBS) through anus. After 24 hours, ASIV was administrated once daily by gavage for 6 days. On day 1 and day 7, colon tissue was collected for macroscopic and histological examination, ELISA, Western blot and immunohistochemical analysis. TNBS impaired colonic mucosa with an injured epithelial architecture, increased inflammatory cell infiltration, and decreased colonic blood flow. Lgr5 positive cell number in crypt and ß-catenin nuclear translocation were down-regulated by TNBS treatment. TNBS induced epithelial F-actin disruption and junctional protein degradation. Furthermore, adenosine triphosphate (ATP) content and ATP synthase subunit ß expression in the colon tissue were significantly decreased after TNBS stimulation. All of the aforementioned alterations were relieved by ASIV post-treatment. The present study revealed that ASIV promoted mucosal healing process in TNBS-induced colitis, which was most likely attributed to regulating energy metabolism.


Assuntos
Colite/etiologia , Colite/metabolismo , Metabolismo Energético/efeitos dos fármacos , Saponinas/farmacologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Triterpenos/farmacologia , Actinas/metabolismo , Animais , Biomarcadores , Contagem de Células , Colite/tratamento farmacológico , Colite/patologia , Colo/irrigação sanguínea , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteólise/efeitos dos fármacos , Ratos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Saponinas/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas de Junções Íntimas/metabolismo , Triterpenos/química
7.
Microcirculation ; 23(6): 426-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27164060

RESUMO

OBJECTIVE: This study was designed to examine the effect of KDZ, on the BBB disruption in rat underwent MCAO and reperfusion. METHODS: Male Sprague-Dawley rats (260-280 g) were subjected to 60 minutes MCAO followed by reperfusion. KDZ (4 mL/kg) was administrated before ischemia. The Evans blue extravasation, albumin leakage, brain water content, TJ proteins, caveolin-1, p-caveolin-1, Src, and p-Src were evaluated. Neurological scores, cerebral infarction, and CBF were assessed. The binding affinity of KDZ to Src was examined. RESULTS: I/R evoked a range of insults including Evans blue extravasation, albumin leakage, brain water content increase, CBF decrease, cerebral infarction, and neurological deficits, all of which were attenuated by KDZ. Meanwhile, KDZ inhibited TJ proteins down-expression, expression of caveolin-1, phosphorylation of caveolin-1 and Src after I/R. In addition, SPR revealed binding of KDZ to Src with high affinity. CONCLUSIONS: KDZ protects BBB from disruption and improves cerebral outcomes following I/R via preventing the degradation of TJ proteins, caveolin-1 expression, and inhibiting p-caveolin-1 and p-Src, which were most likely attributable to the ability of its main ingredients to bind to Src and inhibit its phosphorylation.


Assuntos
Barreira Hematoencefálica/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Caveolina 1/antagonistas & inibidores , Caveolina 1/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Proteínas de Junções Íntimas/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
8.
Microcirculation ; 20(8): 736-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23809007

RESUMO

OBJECTIVE: This study was designed to investigate the protective potential of AS-IV against ischemia and I/R-induced myocardial damage, with focusing on possible involvement of energy metabolism modulation in its action and the time phase in which it takes effect. METHODS: SD rats were subjected to 30 minutes LADCA occlusion, followed by reperfusion. MBF, myocardial infarct size, and cardiac function were evaluated. Myocardial structure and myocardial apoptosis were assessed by double immunofluorescence staining of F-actin and TUNEL. Content of ATP, ADP, and AMP in myocardium, cTnI level, expression of ATP5D, P-MLC2, and apoptosis-related molecules were determined. RESULTS: Pretreatment with AS-IV suppressed MBF decrease, myocardial cell apoptosis, and myocardial infarction induced by I/R. Moreover, ischemia and I/R both caused cardiac malfunction, decrease in the ratio of ATP/ADP and ATP/AMP, accompanying with reduction of ATP 5D protein and mRNA, and increase in P-MLC2 and serum cTnI, all of which were significantly alleviated by pretreatment with AS-IV, even early in ischemia phase for the insults that were implicated in energy metabolism. CONCLUSIONS: AS-IV prevents I/R-induced cardiac malfunction, maintains the integrity of myocardial structure through regulating energy metabolism. The beneficial effect of AS-IV on energy metabolism initiates during the phase of ischemia.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miocárdio , Saponinas/farmacologia , Triterpenos/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , ATPases Translocadoras de Prótons/metabolismo , Ratos , Ratos Sprague-Dawley , Troponina I/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA