Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424085

RESUMO

Chronic stress is the primary environmental risk factor for major depressive disorder (MDD), and there is compelling evidence that neuroinflammation is the major pathomechanism linking chronic stress to MDD. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a negative regulator of MAPK signaling pathways involved in cellular stress responses, survival, and neuroinflammation. We examined the possible contributions of MKP-1 to stress-induced MDD by comparing depression-like behaviors (anhedonia, motor retardation, behavioral despair), neuroinflammatory marker expression, and MAPK signaling pathways among rats exposed to chronic unpredictable mild stress (CUMS), overexpressing MKP-1 in the hippocampus, and CUMS-exposed rats underexpressing MKP-1 in the hippocampus. Rats exposed to CUMS exhibited MKP-1 overexpression, greater numbers of activated microglia, and enhanced expressions of neuroinflammatory markers (interleukin [IL]-6, [IL]-1ß, tumor necrosis factor [TNF]-ɑ, and decreased phosphorylation levels of ERK and p38 in the hippocampus as well as anhedonia in the sucrose preference test, motor retardation in the open field, and greater immobility (despair) in the forced swimming tests. These signs of neuroinflammation and depression-like behaviors and phosphorylation levels of ERK and p38 were also observed in rats overexpressing MKP-1 without CUMS exposure, while CUMS-induced neuroinflammation, microglial activation, phosphorylation levels of ERK and p38, and depression-like behaviors were significantly reversed by MKP-1 knockdown. Moreover, MKP-1 knockdown promoted the activation of the MAPK isoform ERK, implying that the antidepressant-like effects of MKP-1 knockdown may be mediated by the ERK pathway disinhibition. These findings suggested that hippocampal MKP-1 is an essential regulator of stress-induced neuroinflammation and a promising target for antidepressant development.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Ratos , Anedonia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Psychiatry Res ; 269: 126-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145293

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) has been widely used to treat depression. The mechanistic basis for the effects of rTMS is not well understood, although previous studies have suggested that it involves the regulation of hypothalamic-pituitary-adrenocortical (HPA) axis and protection of hippocampal neurons. We investigated this in the present study using a chronic unpredictable mild stress (CUMS) paradigm in Sprague-Dawley rats. The rats were subjected to rTMS for 15 consecutive days, and body weight, sucrose consumption, and locomotor activity were evaluated. B cell lymphoma-2-associated X protein (Bax) expression was assessed by immunohistochemistry; cell morphology was examined by Nissl staining; and adrenocorticotropic hormone (ACTH) and cortisol (CORT) levels in the hippocampus were measured by enzyme-linked immunosorbent assay. CUMS decreased body weight and sucrose consumption in rats along with horizontal/vertical distance traveled in the open field test. Rats subjected to CUMS also showed increased levels of Bax as well as ACTH and CORT; the hippocampal neurons in these animals had abnormal morphology and were reduced in number. rTMS reversed these changes and improved depression-like behaviors. Thus, rTMS abrogates the loss of hippocampal neurons and restores the balance of the HPA axis in the treatment of depression.


Assuntos
Apoptose/fisiologia , Depressão/terapia , Hipocampo/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Depressão/patologia , Depressão/psicologia , Hipocampo/patologia , Masculino , Neurônios/patologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Estresse Psicológico/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA