RESUMO
PURPOSE: M2-type tumor-associated macrophages (TAM) residing in the tumor microenvironment (TME) have been linked to tumor invasiveness, metastasis and poor prognosis. M2 TAMs suppress T cell activation, silencing the recognition of the cancer by the immune system. Targeting TAMs in anti-cancer therapy may support the immune system and immune-checkpoint inhibitor therapies to fight the cancer cells. We aimed to develop a PET tracer for the imaging of M2 TAM infiltration of cancer, using activated legumain as the imaging target. BASIC PROCEDURES: Two P1-mimicking inhibitors with a cyano-warhead were labeled with carbon-11 and evaluated in vitro and in vivo with a CT26 tumor mouse model. Target expression and activity were quantified from RT-qPCR and in vitro substrate conversion, respectively. The co-localization of legumain and TAMs was assessed by fluorescence microscopy. The two tracers were evaluated by PET with subsequent biodistribution analysis with the dissected tissues. Parent-to-total radioactivity in plasma was determined at several time points after i.v. tracer injection, using reverse phase radio-UPLC. MAIN FINDINGS: Legumain displayed a target density of 40.7 ± 19.1 pmol per mg total protein in tumor lysate (n = 4) with high substrate conversion and colocalization with M2 macrophages in the tumor periphery. [11C]1 and [11C]2 were synthesized with >95 % radiochemical purity and 12.9-382.2 GBq/µmol molar activity at the end of synthesis. We observed heterogeneous tumor accumulation in in vitro autoradiography and PET for both tracers. However, excess unlabeled 1 or 2 did not compete with tracer accumulation. Both [11C]1 and [11C]2 were rapidly metabolized to a polar radiometabolite in vivo. PRINCIPAL CONCLUSIONS: The legumain tracers [11C]1 and [11C]2, synthesized with high radiochemical purity and molar activity, accumulate in the legumain-positive CT26 tumor in vivo. However, the lack of competition by excess compound questions their specificity. Both tracers are rapidly metabolized in vivo, requiring structural modifications towards more stable tracers for further investigations.
RESUMO
BACKGROUND: Peptidic radiotracers are preferentially excreted through the kidneys, which often results in high persistent renal retention of radioactivity, limiting or even preventing therapeutic clinical translation of these radiotracers. Exendin-4, which targets the glucagon-like-peptide 1 receptor (GLP-1R) overexpressed in insulinomas and in congenital hyperinsulinism, is an example thereof. The use of the tripeptide MVK, which is readily cleaved between methionine and valine by neprilysin at the renal brush border membrane, already showed promising results in reducing kidney uptake as reported in the literature. Based on our previous findings we were interested how linker variants with multiple copies of the MV-motive influence renal washout of radiolabelled exendin-4. RESULTS: Three exendin-4 derivatives, carrying either one MVK, a MV-MVK or a MVK-MVK linker were synthesized and compared to a reference compound lacking a cleavable linker. In vivo results of a biodistribution in GLP-1R overexpressing tumour bearing mice at 24 h post-injection demonstrated a significant reduction (at least 57%) of renal retention of all 111In-labeled exendin-4 compounds equipped with a cleavable linker compared to the reference compound. While the insertion of the single linker MVK led to a reduction in kidney uptake of 70%, the dual approach with the linker MV-MVK slightly, but not significantly enhanced this effect, with 77% reduction in kidney uptake compared to the reference. In vitro IC50 and cell uptake studies were conducted and demonstrated that though the cleavable linkers negatively influenced the affinity towards the GLP-1R, cell uptake remained largely unaffected, except for the MV-MVK cleavable linker conjugate, which displayed lower cell uptake than the other compounds. Importantly, the tumour uptake in the biodistribution study was not significantly affected with 2.9, 2.5, 3.2 and 1.5% iA/g for radiolabelled Ex4, MVK-Ex4, MV-MVK-Ex4 and MVK-MVK-Ex4, respectively. CONCLUSION: Cleavable linkers are highly efficient in reducing the radioactivity burden in the kidney. Though the dual linker approach using the instillation of MV-MVK or MVK-MVK between exendin-4 and the radiometal chelator did not significantly outperform the single cleavable linker MVK, further structural optimization or the combination of different cleavable linkers could be a stepping stone in reducing radiation-induced nephrotoxicity.
RESUMO
Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.
RESUMO
Breast cancer resistance protein (BCRP, ABCG2) is an efflux transporter that plays a crucial role in multidrug resistance to antineoplastic drugs. Ko143, an analogue of the natural product fumitremorgin C, is a potent inhibitor of ABCG2 but is rapidly hydrolyzed to an inactive metabolite in vivo. To identify ABCG2 inhibitors with improved metabolic stability, we have assessed a series of Ko143 analogues for their ability to inhibit ABCG2-mediated transport in ABCG2-transduced MDCK II cells and determined the stability of the most potent compounds in liver microsomes. The most promising analogues were evaluated in vivo by positron emission tomography. In vitro, three of the tested analogues were potent ABCG2 inhibitors and stable in microsomes. In vivo, they increased the distribution of the ABCG2/ABCB1 substrate [11C]tariquidar to the brain both in wild-type (with Abcb1a/b transport blocked by tariquidar) and Abcb1a/b(-/-) mice. One analogue was more potent than Ko143 in both animal models.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Camundongos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismoRESUMO
BACKGROUND: Previously, we have exploited bacterial adhesins-derived fibronectin-binding peptides (FnBPs) for targeting mechanically altered fibronectin (Fn) fibrils within the cancer-associated extra-cellular matrix (ECM). However, despite the ability of FnBP probes to visualize pathological lesions, when labeled with metallic radionuclides and administered for targeted imaging, they exhibit high and persistent retention of radioactivity within the kidneys. Intending to overcome this issue towards a future translation of FnBPs to the clinic, the goal of the present study was to reduce the renal retention of 111In-labelled FnBPs employing dual renal brush border membrane (BBM) enzyme-sensitive Met-Val-Lys-based linkers, enabling a rapid washout of radioactivity from the kidneys. METHODS: Three maleimide-activated NOTA-conjugated brush border-enzyme cleavable linkers equipped with either single or dual consecutive MVK-based cleavable moieties were designed and synthesized. Their respective NOTA-MVK-based FnBPA5.1 conjugates were obtained by means of maleimide-thiol mediated conjugation at the N-terminus of the Fn-binding sequence, radiolabeled with indium-111, and further evaluated in vitro and in vivo in comparison to the control [111In]In-FnBPA5.1. RESULTS: The linker equipped with two MVK sites displayed a two-fold more effective cleavage rate than the single MVK featuring linker in vitro, as revealed by the quantification of the released Met-containing radiometabolites. SPECT/CT imaging and biodistribution studies of the series of FnBPA5.1 radioconjugates performed at 24 h post-injection (p.i.) confirmed the in vitro results, indicating that the renal retention of 111In-labelled FnBPs can be significantly lowered through the interposition of a single MVK-based sequence between the Fn-targeting moiety and the chelating unit (52.75 ± 9.79 vs 92.88 ± 4.85 % iA/g, P < 0.001), and even further reduced by the addition of a second one (down to 34.82 ± 6.04, P < 0.001), with minor influence on the biodistribution in other organs, such as tumors. CONCLUSIONS: In summary, we report here promising 111In-labelled FnBP radiotracers equipped with dual MVK-based cleavable linkers leading to a more effective reduction of renal retention and improved tumor-to-kidney ratios compared to the single MVK-featuring derivative. Our dual MVK strategy is a crucial step towards the clinical translation of mechano-sensory FnBPs and might as well be adopted for other radiopharmaceuticals suffering from persistent renal retention of radioactivity.
Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Adesinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Fibronectinas/metabolismo , Humanos , Rim/metabolismo , Maleimidas/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Compostos de Sulfidrila , Distribuição TecidualRESUMO
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer's disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer's disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.
RESUMO
PURPOSE: Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and follow alterations of receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptor (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6 and structural imaging by magnetic resonance imaging (MRI). PROCEDURES: Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. [18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were performed for anatomical reference and delineating the lesion in tMCAO mice. RESULTS: mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased to 1.3-2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 50 %. Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex vivo biodistribution studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to contralateral striatum in tMCAO mice, the in vivo specificity of [18F]RoSMA-18-d6 was confirmed only in the CB2R-rich spleen. CONCLUSIONS: This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a reduced [18F]FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage. [18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal models of neuroinflammation without neuronal loss.
Assuntos
Isquemia Encefálica , Canabinoides , Animais , Camundongos , Fluordesoxiglucose F18 , Metaloproteinase 9 da Matriz , Receptores de Canabinoides , Fator de Necrose Tumoral alfa , Distribuição Tecidual , Isquemia Encefálica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Modelos Animais de Doenças , Isquemia , Glucose , RNA Mensageiro , RNARESUMO
Radiopharmacy at ETH has worked on the development of novel PET tracers for neuro-, cardiac- and tumor imaging for many years. In this paper, our efforts on targeting the glutamatergic system of the metabotropic glutamate receptor subtype 5 (mGluR5) and the ionotropic N-methyl-D-aspartate (NMDA) receptor are summarized. We briefly described the principles of positron emission tomography (PET) tracer development for the central nervous system (CNS) and the radiolabeling methods used in our laboratory. To assess the radioligands, results of in vitro autoradiography, biodistribution, and metabolite studies as well as PET imaging data are discussed. Furthermore, key PET parameters for kinetic modeling and quantification methods are provided. Two mGluR5 PET tracers, [11C]ABP688 and [18F]PSS232, were translated in our GMP labs and evaluated in human subjects. The newly developed GluN2B PET tracer [11C]Me-NB1 is currently being investigated in a first-in-human PET study and several F-18 labeled tracers are being evaluated in non-human primates in which the first-in-class will be translated for human studies.
Assuntos
Encéfalo , Compostos Radiofarmacêuticos , Encéfalo/diagnóstico por imagem , Neuroimagem , Tomografia por Emissão de Pósitrons , Distribuição TecidualRESUMO
The cannabinoid type 2 (CB2) receptor has emerged as a valuable target for therapy and imaging of immune-mediated pathologies. With the aim to find a suitable radiofluorinated analogue of the previously reported CB2 positron emission tomography (PET) radioligand [11C]RSR-056, 38 fluorinated derivatives were synthesized and tested by in vitro binding assays. With a Ki (hCB2) of 6 nM and a selectivity factor of nearly 700 over cannabinoid type 1 receptors, target compound 3 exhibited optimal in vitro properties and was selected for evaluation as a PET radioligand. [18F]3 was obtained in an average radiochemical yield of 11 ± 4% and molar activities between 33 and 114 GBq/µmol. Specific binding of [18F]3 to CB2 was demonstrated by in vitro autoradiography and in vivo PET experiments using the CB2 ligand GW-405â¯833. Metabolite analysis revealed only intact [18F]3 in the rat brain. [18F]3 detected CB2 upregulation in human amyotrophic lateral sclerosis spinal cord tissue and may thus become a candidate for diagnostic use in humans.
Assuntos
Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Compostos Radiofarmacêuticos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Encéfalo/diagnóstico por imagem , AMP Cíclico/metabolismo , Radioisótopos de Flúor/química , Hepatócitos/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Conformação Proteica , Radioquímica , Compostos Radiofarmacêuticos/química , Ratos , Ratos Wistar , Receptor CB2 de Canabinoide/química , Relação Estrutura-AtividadeRESUMO
The costimulatory molecule CD80 is an early marker for immune activation. It is upregulated on activated antigen-presenting cells. We aimed at developing a tracer for imaging CD80 by positron emission tomography (PET). Novel CD80 ligands were synthesized and tested by SPR for affinity to human CD80 (hCD80) and displacement of endogenous ligands. Several compounds bound with one-digit nanomolar affinity to hCD80 and displaced CTLA-4 and CD28 at nanomolar concentrations. A structure-affinity relationship study revealed relevant moieties for strong affinity to hCD80 and positions for further modifications. Lead compound MT107 (7f) was radiolabeled with carbon-11. In vitro, [11C]MT107 showed specific binding to hCD80-positive tissue and high plasma protein binding. In vivo, [11C]MT107 accumulated in liver, gall bladder, and intestines but only scarcely in hCD80-positive xenografts. The unfavorable in vivo performance may result from high plasma protein binding and extensive biliary excretion.
Assuntos
Antígeno B7-1/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Bibliotecas de Moléculas Pequenas/química , Animais , Sítios de Ligação , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Bibliotecas de Moléculas Pequenas/síntese químicaRESUMO
PURPOSE: (E)-3-(pyridin-2-ylethynyl)cyclohex-2-enone O-(3-(2-[18F]-fluoroethoxy)propyl) oxime ([18F]-PSS232) is a new PET tracer for imaging of metabotropic glutamate receptor subtype 5 (mGlu5), and has shown promising results in rodents and humans. The aim of this study was to estimate the radiation dosimetry and biodistribution in humans, to assess dose-limiting organs, and to demonstrate safety and tolerability of [18F]-PSS232 in healthy volunteers. METHODS: PET/CT scans of six healthy male volunteers (mean age 23.5 ± 1.7; 21-26 years) were obtained after intravenous administration of 243 ± 3 MBq of [18F]-PSS232. Serial whole-body (vertex to mid-thigh) PET scans were assessed at ten time points, up to 90 min after tracer injection. Calculation of tracer kinetics and cumulated organ activities were performed using PMOD 3.7 software. Dosimetry estimates were calculated using the OLINDA/EXM software. RESULTS: Injection of [18F]-PSS232 was safe and well tolerated. Organs with highest absorbed doses were the gallbladder wall (0.2295 mGy/MBq), liver (0.0547 mGy/MBq), and the small intestine (0.0643 mGy/MBq). Mean effective dose was 3.72 ± 0.12 mSv/volunteer (range 3.61-3.96 mSv; 0.0153 mSv/MBq). CONCLUSION: [18F]-PSS232, a novel [18F]-labeled mGlu5 tracer, showed favorable dosimetry values. Additionally, the tracer was safe and well tolerated.
RESUMO
Using positron emission tomography (PET), a profound alteration of the metabotropic glutamate receptor 5 (mGluR5) was found in human smoking addiction and abstinence. As human PET data either reflect the impact of chronic nicotine exposure or a pre-existing vulnerability to nicotine addiction, we designed a preclinical, longitudinal study to investigate the effect of chronic nicotine exposure on mGluR5 with the novel radiotracer [18F]PSS232 using PET. Twelve male dark Agouti rats at the age of 6 weeks were assigned randomly to three groups. From day 0 to day 250 the groups received 0 mg/L, 4 mg/L, or 8 mg/L nicotine solution in the drinking water. From day 250 to 320 all groups received nicotine-free drinking water. PET scans with [18F]PSS232 were performed in all animals on days 0, 250, and 320. To assess locomotion, seven tests in square open field arenas were carried out 72 days after the last PET scan. During the first four tests, rats received 0 mg/L nicotine and for the last three tests 4 mg/L nicotine in the drinking water. After 250 days of nicotine consumption [18F]PSS232 binding was reduced in the striatum, hippocampus, thalamus, and midbrain. At day 320, after nicotine withdrawal, [18F]PSS232 binding increased. These effects were more pronounced in the 4 mg/L nicotine group. Chronic administration of nicotine through the drinking water reduced exploratory behaviour. This preliminary longitudinal PET study demonstrates that chronic nicotine administration alters behaviour and mGluR5 availability. Chronic nicotine administration leads to decreased [18F]PSS232 binding which normalizes after prolonged nicotine withdrawal.
Assuntos
Encéfalo , Atividade Motora , Nicotina , Receptor de Glutamato Metabotrópico 5 , Animais , Masculino , Administração Oral , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Estudos Longitudinais , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Nicotina/toxicidade , Tomografia por Emissão de Pósitrons , Ratos Endogâmicos , Receptor de Glutamato Metabotrópico 5/metabolismoRESUMO
Aiming at developing mechanism-based amino acid (18)F-PET tracers for tumor imaging, we synthesized two (18)F-labeled analogues of 5-hydroxy-l-[ß-(11)C]tryptophan ([(11)C]5HTP) whose excellent in vivo performance in neuroendocrine tumors is mainly attributed to its decarboxylation by aromatic amino acid decarboxylase (AADC), an enzyme overexpressed in these malignancies. Reference compounds and precursors were synthesized following multistep synthetic approaches. Radiosynthesis of tracers was accomplished in good radiochemical yields (15-39%), high specific activities (45-95 GBq/µmol), and excellent radiochemical purities. In vitro cell uptake was sodium-independent and was inhibited ≥95% by 2-amino-2-norbornanecarboxylic acid (BCH) and â¼30% by arginine. PET imaging in mice revealed distinctly high tumor/background ratios for both tracers, outperforming the well-established O-(2-[(18)F]fluoroethyl)tyrosine ([(18)F]FET) tracer in a head-to-head comparison. Biological evaluation revealed that the in vivo performance is most probably independent of any interaction with AADC. Nevertheless, the excellent tumor visualization qualifies the new tracers as interesting probes for tumor imaging worthy for further investigation.
Assuntos
Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Triptofano/química , Triptofano/síntese química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico , Triptofano/análise , Triptofano/metabolismoRESUMO
We report a novel prosthetic group based on a heterocyclic methylsulfone derivative for the rapid, stable, and chemoselective (18)F-labeling of thiol-containing (bio)molecules under mild aqueous reaction conditions. Compared to established maleimide approaches, the new methodology displays some clear advantages for imaging probe development.
Assuntos
Compostos Radiofarmacêuticos/química , Compostos de Sulfidrila/química , Água/química , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Marcação por Isótopo , Maleimidas/química , Camundongos , Camundongos Nus , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Transplante HeterólogoRESUMO
UNLABELLED: The aim of this first-in-man study was to demonstrate the feasibility, safety, and tolerability, as well as provide dosimetric data and evaluate the imaging properties, of the bombesin analogue BAY 864367 for PET/CT in a small group of patients with primary and recurrent prostate cancer (PCa). METHODS: Ten patients with biopsy-proven PCa (5 with primary PCa and 5 with prostate-specific antigen recurrence after radical prostatectomy) were prospectively selected for this exploratory clinical trial with BAY 864367, a new (18)F-labeled bombesin analogue. PET scans were assessed at 6 time points, up to 110 min after intravenous administration of 302 ± 11 MBq of BAY 864367. Imaging results were compared with (18)F-fluorocholine PET/CT scans. Dosimetry was calculated using the OLINDA/EXM software. RESULTS: Three of 5 patients with primary disease showed positive tumor delineation in the prostate, and 2 of 5 patients with biochemical relapse showed a lesion suggestive of recurrence on the BAY 864367 scan. Tumor-to-background ratio averaged 12.9 ± 7.0. The ratio of malignant prostate tissue to normal prostate tissue was 4.4 ± 0.6 in 3 patients with tracer uptake in the primary PCa. Mean effective dose was 4.3 ± 0.3 mSv/patient (range, 3.7-4.9 mSv). CONCLUSION: BAY 864367, a novel (18)F-labeled bombesin tracer, was successfully investigated in a first-in-man clinical trial of PCa and showed favorable dosimetric values. Additionally, the application was safe and well tolerated. The tracer delineated tumors in a subset of patients, demonstrating the potential of gastrin-releasing-peptide receptor imaging.
Assuntos
Bombesina/análogos & derivados , Radioisótopos de Flúor , Neoplasias da Próstata/diagnóstico por imagem , Radiometria/métodos , Administração Intravenosa , Idoso , Algoritmos , Biópsia , Peptídeo Liberador de Gastrina/química , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Antígeno Prostático Específico/metabolismo , Compostos Radiofarmacêuticos , Software , Tomografia Computadorizada por Raios XRESUMO
As a continuation of our research efforts toward the development of tryptophan-based radiotracers for tumor imaging with positron emission tomography (PET), three new fluoroethoxy tryptophan analogues were synthesized and evaluated in vivo. These new tracers (namely, 4-(2-[(18)F]fluoroethoxy)-dl-tryptophan ([(18)F]4-FEHTP), 6-(2-[(18)F]fluoroethoxy)-dl-tryptophan ([(18)F]6-FEHTP), and 7-(2-[(18)F]fluoroethoxy)-dl-tryptophan ([(18)F]7-FEHTP) carry the fluoroethoxy side chain either at positions 4-, 6-, or 7- of the indole core. Reference compounds and precursors were synthesized by multistep approaches. Radiosynthesis was accomplished by no-carrier-added nucleophilic (18)F-fluorination following either an indirect approach (O-alkylation of the corresponding hydroxytryptophan with [(18)F]fluoroethyltosylate) or a direct approach (nucleophilic [(18)F] fluorination using a protected mesyl precursor). Radiochemical yields (decay corrected) for both methods were in the range of 10-18%. Small animal PET imaging with xenograft-bearing mice revealed the highest tumor/background ratio for [(18)F]6-FEHTP which, in a direct comparison, outperformed the other two tryptophan tracers and also the well-established tyrosine analogue O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]l-FET). Investigation of the transport mechanism of [(18)F]6-FEHTP in small cell lung cancer cells (NCI-H69) revealed that it is most probably taken up exclusively via the large neutral amino acid transporter(s) (LAT).
Assuntos
Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons , Triptofano/síntese química , 5-Hidroxitriptofano/química , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Radiofarmacêuticos/síntese química , Triptofano/análogos & derivadosRESUMO
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB(0,+) (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[(18)F]fluroethyl)-L-tyrosine ([(18)F]FET), namely O-2((2-[(18)F]fluoroethyl)methylamino)ethyltyrosine ([(18)F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [(18)F]fluorination in 16-20% decay-corrected yields with radiochemical purity >99%. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [(18)F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [(18)F]FET and low brain uptake, indicating negligible transport across the blood-brain barrier. In conclusion, the non-natural cationic amino acid PET probe [(18)F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB(0,+).
Assuntos
Sistemas de Transporte de Aminoácidos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Tirosina/análogos & derivados , Sistemas de Transporte de Aminoácidos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Radioisótopos de Flúor/química , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico , Transporte Proteico , Compostos Radiofarmacêuticos , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Transplante Heterólogo , Tirosina/síntese químicaRESUMO
PURPOSE: The concentrative amino acid transporter ATB(0,+) (SLC6A14) is under evaluation as a target for anticancer therapy. An ATB(0,+)-selective positron emission tomography (PET) probe could advance preclinical drug development. We characterised the cationic tyrosine analogue O-2((2-[(18)F]fluoroethyl)methyl-amino)ethyltyrosine ([(18)F]FEMAET) as a PET probe for ATB(0,+) activity. PROCEDURES: Cell uptake was studied in vitro. ATB(0,+) expression was quantified by real-time PCR. [(18)F]FEMAET accumulation in xenografts was investigated by small animal PET with mice. RESULTS: [(18)F]FEMAET accumulated in PC-3 and NCI-H69 cancer cells in vitro. As expected for ATB(0,+) transport, uptake was inhibited by LAT/ATB(0,+) inhibitors and dibasic amino acids, and [(18)F]FEMAET efflux was only moderately stimulated by extracellular amino acids. ATB(0,+) was expressed in PC-3 and NCI-H69 but not MDA-MB-231 xenografts. PET revealed accumulation in PC-3 and NCI-H69 xenografts and significant reduction by ATB(0,+) inhibition. Uptake was negligible in MDA-MB-231 xenografts. CONCLUSION: ATB(0,+) activity can be imaged in vivo by PET with [(18)F]FEMAET.
Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Radioisótopos de Flúor/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Tirosina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/química , Humanos , Camundongos , Camundongos Nus , Tirosina/químicaRESUMO
In the search for an efficient, fluorine-18 labeled amino acid based radiotracer for tumor imaging with positron emission tomography (PET), two new tryptophan analogs were synthesized and characterized in vitro and in vivo. Both are tryptophan alkyl-derivatives, namely 2-(3-[(18)F]fluoropropyl)-DL-tryptophan ([(18)F]2-FPTRP) and 5-(3-[(18)F]fluoro-propyl)-DL-tryptophan ([(18)F]5-FPTRP). Standard reference compounds and precursors were prepared by multi step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [(18)F]fluorination in 29-34% decay corrected yields with radiochemical purity over 99%. In vitro cell uptake assays showed that both compounds are substrates for amino acid transport and enter small cell lung cancer cells (NCI-H69) most probably almost exclusively via large neutral amino acids transporter(s) (LAT). Small animal PET imaging with xenograft bearing mice revealed high tumor/background ratios for [(18)F]2-FPTRP comparable to the well established tyrosine analog O-(2-[(18)F]fluroethyl)-L-tyrosine ([(18)F]FET). Radiometabolite studies showed no evidence of involvement of a biotransformation step in tumor accumulation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Meios de Contraste , Radioisótopos de Flúor , Neoplasias Pulmonares/diagnóstico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Triptofano , Animais , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/química , Radioisótopos de Flúor/química , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Triptofano/análogos & derivados , Triptofano/síntese químicaRESUMO
18F radiolabelling of peptides bearing two different prosthetic groups was successfully conducted in a continuous flow microfluidic device for the first time. Radiochemical yields were dependent on precursor concentration, reaction temperature and flow rate. The choice of leaving group had a dramatic influence on the reaction outcome. Rapid reaction optimization was possible.