Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 81(3): 530-540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193292

RESUMO

BACKGROUND: CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS: We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS: We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS: Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.


Assuntos
Linfócitos T CD8-Positivos , Hipertensão , Camundongos , Animais , Receptores Purinérgicos P2X7/genética , Camundongos Knockout , Cloreto de Sódio na Dieta , Sódio , Trifosfato de Adenosina , Camundongos Endogâmicos C57BL
2.
J Hematol Oncol ; 16(1): 48, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143124

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which preferentially arise in immunocompromised patients while lack of effective therapeutic options. Oncoproteins Myc and hypoxia-inducible factor-1α (HIF1α) have been found closely related to KSHV infection, replication and oncogenesis. However, the strategies of dual targeting these two oncoproteins have never been developed and tested for treatments of KSHV-related malignancies. In the current study, we report that treatment of echinomycin dramatically regresses cell growth both in vitro-cultured KSHV + tumor cells and in vivo KS or PEL xenograft mice models, through simultaneously inhibiting Myc and HIF1α expression. Echinomycin treatment also induces viral lytic gene expression whereas not increasing infectious virions production from KSHV + tumor cells. Our comparative transcriptomic analysis has identified a bunch of new Echinomycin-regulated, Myc- and HIF1α-related genes contributed to KSHV pathogenesis, including KDM4B and Tau, which are required for the survival of KSHV + tumor cells with functional validation. These data together reveal that dual targeting Myc and HIF1α such as using Echinomycin may represent a new and promising option for treatments of these virus-associated malignancies.


Assuntos
Equinomicina , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Animais , Camundongos , Herpesvirus Humano 8/genética , Equinomicina/farmacologia , Equinomicina/uso terapêutico , Latência Viral/genética , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/metabolismo , Ciclo Celular , Histona Desmetilases com o Domínio Jumonji
3.
Viruses ; 15(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112991

RESUMO

Although Kaposi's sarcoma-associated herpesvirus (KSHV) has been reported to cause several human cancers including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), the mechanisms of KSHV-induced tumorigenesis, especially virus-host interaction network, are still not completely understood, which therefore hinders the development of effective therapies. Histamine, together with its receptors, plays an important role in various allergic diseases by regulating different inflammation and immune responses. Our previous data showed that antagonists targeting histamine receptors effectively repressed KSHV lytic replication. In the current study, we determined that histamine treatment increased cell proliferation and anchorage-independent growth abilities of KSHV-infected cells. Furthermore, histamine treatment affected the expression of some inflammatory factors from KSHV-infected cells. For clinical relevance, several histamine receptors were highly expressed in AIDS-KS tissues when compared to normal skin tissues. We determined that histamine treatment promoted KSHV-infected lymphoma progression in immunocompromised mice models. Therefore, besides viral replication, our data indicate that the histamine and related signaling are also involved in other functions of KSHV pathogenesis and oncogenesis.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Animais , Camundongos , Herpesvirus Humano 8/fisiologia , Histamina , Receptores Histamínicos/uso terapêutico , Carcinogênese , Transformação Celular Neoplásica
4.
Geroscience ; 45(4): 2135-2143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36856945

RESUMO

Age-associated diseases are becoming progressively more prevalent, reflecting the increased lifespan of the world's population. However, the fundamental mechanisms of physiologic aging are poorly understood, and in particular, the molecular pathways that mediate cardiac aging and its associated dysfunction are unclear. Here, we focus on certain ion flux abnormalities of the mitochondria that may contribute to cardiac aging and age-related heart failure. Using oxidative phosphorylation, mitochondria pump protons from the matrix to the intermembrane space to generate a proton gradient across the inner membrane. The protons are returned to the matrix by the ATPase complex within the membrane to generate ATP. However, a portion of protons leak back to the matrix and do not drive ATP production, and this event is called proton leak or uncoupling. Accumulating evidence suggests that mitochondrial proton leak is increased in the cardiac myocytes of aged hearts. In this mini-review, we discuss the measurement methods and major sites of mitochondrial proton leak with an emphasis on the adenine nucleotide transporter 1 (ANT1), and explore the possibility of inhibiting augmented mitochondrial proton leak as a therapeutic intervention to mitigate cardiac aging.


Assuntos
Canais Iônicos , Prótons , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
6.
Front Microbiol ; 13: 882520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516440

RESUMO

Kaposi's Sarcoma (KS) caused by Kaposi's sarcoma-associated herpesvirus (KSHV) continues to be the most common AIDS-associated tumor. Involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. Numerous types of cancer are associated with the alterations of in components of the microbiome. However, little is known about how KSHV coinfection affects the oral microbiome in HIV+ patients, especially in a "pre-cancer" niche. Using 16S rRNA pyrosequencing, we found that oral shedding of KSHV correlated with altered oral microbiome signatures in HIV+ patients, including a reduction in the microbiota diversity, changing the relative composition of specific phyla and species, and regulating microbial functions. Furthermore, we found that Streptococcus sp., one of the most increased species in the oral cavity of HIV+/KSHV+ patients, induced KSHV lytic reactivation in primary oral cells. Together, these data indicate that oral shedding of KSHV may manipulate the oral microbiome to promote viral pathogenesis and tumorigenesis especially in immunocompromised patients.

8.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453301

RESUMO

Accumulating evidence indicate that blueberries have anti-hypertensive properties, which may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract (BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs. These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang II-treated HAECs.

9.
Front Pharmacol ; 13: 850586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308247

RESUMO

The lymphatic circulation is an important component of the circulatory system in humans, playing a critical role in the transport of lymph fluid containing proteins, white blood cells, and lipids from the interstitial space to the central venous circulation. The efficient transport of lymph fluid critically relies on the rhythmic contractions of collecting lymph vessels, which function to "pump" fluid in the distal to proximal direction through the lymphatic circulation with backflow prevented by the presence of valves. When rhythmic contractions are disrupted or valves are incompetent, the loss of lymph flow results in fluid accumulation in the interstitial space and the development of lymphedema. There is growing recognition that many pharmacological agents modify the activity of ion channels and other protein structures in lymph muscle cells to disrupt the cyclic contraction and relaxation of lymph vessels, thereby compromising lymph flow and predisposing to the development of lymphedema. The effects of different medications on lymph flow can be understood by appreciating the intricate intracellular calcium signaling that underlies the contraction and relaxation cycle of collecting lymph vessels. For example, voltage-sensitive calcium influx through long-lasting ("L-type") calcium channels mediates the rise in cytosolic calcium concentration that triggers lymph vessel contraction. Accordingly, calcium channel antagonists that are mainstay cardiovascular medications, attenuate the cyclic influx of calcium through L-type calcium channels in lymph muscle cells, thereby disrupting rhythmic contractions and compromising lymph flow. Many other classes of medications also may contribute to the formation of lymphedema by impairing lymph flow as an off-target effect. The purpose of this review is to evaluate the evidence regarding potential mechanisms of drug-related lymphedema with an emphasis on common medications administered to treat cardiovascular diseases, metabolic disorders, and cancer. Additionally, although current pharmacological approaches used to alleviate lymphedema are largely ineffective, efforts are mounting to arrive at a deeper understanding of mechanisms that regulate lymph flow as a strategy to identify novel anti-lymphedema medications. Accordingly, this review also will provide information on studies that have explored possible anti-lymphedema therapeutics.

10.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328467

RESUMO

Cannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [3H]WIN-55,212-2, and not [3H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties. Furthermore, [3H]WIN-55,212-2 bound to a single site in all cancer cells with high affinity and varying densities. CBR characteristics were next compared between human prostate cancer cell lines expressing low (PC-3) and high (DU-145) CBR density. Although mRNA for canonical CBRs was detected in both cell lines, only 5 out of 15 compounds with known high affinity for canonical CBRs displaced [3H]WIN-55,212-2 binding. Functional assays further established that CBRs in prostate cancer cells exhibit distinct signaling properties relative to canonical Gi/Go-coupled CBRs. Prostate cancer cells chronically exposed to both CBR agonists and antagonists/inverse agonists produced receptor downregulation, inconsistent with actions at canonical CBRs. Treatment of DU-145 cells with CBR ligands increased LDH-release, decreased ATP-dependent cell viability, and produced mitochondrial membrane potential depolarization. In summary, several cancer cell lines express CBRs with binding and signaling profiles dissimilar to canonical CBRs. Drugs selectively targeting these atypical CBRs might exhibit improved anti-cancer properties.


Assuntos
Canabinoides , Neoplasias da Próstata , Canabinoides/farmacologia , Morte Celular , Humanos , Masculino , Próstata/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
11.
J Cell Mol Med ; 26(9): 2557-2565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318805

RESUMO

Although small-cell lung cancer (SCLC) accounts for a small fraction of lung cancer cases (~15%), the prognosis of patients with SCLC is poor with an average overall survival period of a few months without treatment. Current treatments include standard chemotherapy, which has minimal efficacy and a newly developed immunotherapy that thus far, benefits a limited number of patients. In the current study, we screened a natural product library and identified 5 natural compounds, in particular tubercidin and lycorine HCl, that display prominent anti-SCLC activities in vitro and in vivo. Subsequent RNA-sequencing and functional validation assays revealed the anti-SCLC mechanisms of these new compounds, and further identified new cellular factors such as BCAT1 as a potential therapeutic target with clinical implication in SCLC patients. Taken together, our study provides promising new directions for fighting this aggressive lung cancer.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Alcaloides de Amaryllidaceae , Humanos , Imunoterapia , Fenantridinas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Transaminases/uso terapêutico , Tubercidina/uso terapêutico
12.
Front Pharmacol ; 12: 727526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483938

RESUMO

Background and Purpose: Doxorubicin (DOX) is a risk factor for arm lymphedema in breast cancer patients. We reported that DOX opens ryanodine receptors (RYRs) to enact "calcium leak," which disrupts the rhythmic contractions of lymph vessels (LVs) to attenuate lymph flow. Here, we evaluated whether dantrolene, a clinically available RYR1 subtype antagonist, prevents the detrimental effects of DOX on lymphatic function. Experimental Approach: Isolated rat mesenteric LVs were cannulated, pressurized (4-5 mm Hg) and equilibrated in physiological salt solution and Fura-2AM. Video microscopy recorded changes in diameter and Fura-2AM fluorescence tracked cytosolic free calcium ([Ca2+ i]). High-speed in vivo microscopy assessed mesenteric lymph flow in anesthetized rats. Flow cytometry evaluated RYR1 expression in freshly isolated mesenteric lymphatic muscle cells (LMCs). Key Results: DOX (10 µmol/L) increased resting [Ca2+ i] by 17.5 ± 3.7% in isolated LVs (n = 11). The rise in [Ca2+ i] was prevented by dantrolene (3 µmol/L; n = 10). A single rapid infusion of DOX (10 mg/kg i.v.) reduced positive volumetric lymph flow to 29.7 ± 10.8% (n = 7) of baseline in mesenteric LVs in vivo. In contrast, flow in LVs superfused with dantrolene (10 µmol/L) only decreased to 76.3 ± 14.0% (n = 7) of baseline in response to DOX infusion. Subsequently, expression of the RYR1 subtype protein as the presumed dantrolene binding site was confirm in isolated mesenteric LMCs by flow cytometry. Conclusion and Implications: We conclude that dantrolene attenuates the acute impairment of lymph flow by DOX and suggest that its prophylactic use in patients subjected to DOX chemotherapy may lower lymphedema risk.

13.
Life Sci ; 285: 119993, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592231

RESUMO

AIMS: Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development. MAIN METHODS: CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively. KEY FINDINGS: qRT-PCR detected CB1 (CB1R) and CB2 receptor (CB2R) mRNA in TC-71 cells. However, binding screens revealed that CBRs expressed exhibit atypical properties relative to canonical receptors, because specific binding in TC-71 could only be demonstrated by the established non-selective CB1/CB2R radioligand [3H]WIN-55,212-2, but not CB1/CB2R radioligand [3H]CP-55,940. Homologous receptor binding demonstrated that [3H]WIN-55,212-2 binds to a single site with nanomolar affinity, expressed at high density. Further support for non-canonical CBRs expression is provided by subsequent binding screens, revealing that only 9 out of 28 well-characterized cannabinoids with high affinity for canonical CB1 and/or CB2Rs were able to displace [3H]WIN-55,212-2, whereas two ligands enhanced [3H]WIN-55,212-2 binding. Five cannabinoids producing the greatest [3H]WIN-55,212-2 displacement exhibited high nanomolar affinity (Ki) for expressed receptors. G-protein modulation and adenylyl cyclase assays further indicate that these CBRs exhibit distinct signaling/functional profiles compared to canonical CBRs. Importantly, cannabinoids with the highest affinity for non-canonical CBRs reduced TC-71 viability and induced cytotoxicity in a time-dependent manner. Studies in a second EWS cell line (A-673) showed similar atypical binding properties of expressed CBRs, and cannabinoid treatment produced cytotoxicity. SIGNIFICANCE: Cannabinoids induce cytotoxicity in EWS cell lines via non-canonical CBRs, which might be a potential therapeutic target to treat EWS.


Assuntos
Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Sarcoma de Ewing/metabolismo , Ligação Competitiva , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Desenvolvimento de Medicamentos , Humanos , Ligantes , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas
14.
J Cancer ; 11(16): 4683-4691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626514

RESUMO

As a highly aggressive pediatric brainstem tumor, diffuse intrinsic pontine glioma (DIPG) accounts for 10% to 20% of childhood brain tumors. The survival rate for DIPG remains very low, with a median survival time as less than one year even under radiotherapy, the current standard treatment. Moreover, over than 250 clinical trials have failed when trying to improve the survival compared to radiotherapy. The sphingolipid metabolism and related signaling pathways have been found closely related to cancer cell survival; however, the sphingolipid metabolism targeted therapies have never been investigated in DIPG. In the current study, the anti-DIPG activity of ABC294640, the only first-in-class orally available Sphingosine kinase (SphK) inhibitor was explored. Treatment with ABC294640 significantly repressed DIPG cell growth by inducing intracellular pro-apoptotic ceramides production and cell apoptosis. We also profiled ABC294640-induced changes in gene expression within DIPG cells and identified many new genes tightly controlled by sphingolipid metabolism, such as IFITM1 and KAL1. These genes are required for DIPG cell survival and display clinical relevance in DIPG patients' samples. Together, our findings in this study indicate that targeting sphingolipid metabolism may represent a promising strategy to improve DIPG treatment.

15.
Nat Commun ; 8: 14037, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067240

RESUMO

Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl- channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Hipertensão/genética , Túbulos Renais Distais/imunologia , Sódio/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Canais de Cloreto/genética , Canais de Cloreto/imunologia , Cloretos/imunologia , Cloretos/metabolismo , Técnicas de Cocultura , Ácido Desoxicólico/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/imunologia , Hipertensão/patologia , Transporte de Íons , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/imunologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sódio/imunologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/imunologia , Quinases da Família src/genética , Quinases da Família src/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA