Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 129: 108668, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39032760

RESUMO

Acetaminophen (APAP, also known as paracetamol) is a commonly used antipyretic and analgesic that is considered safe to use during pregnancy. However, a growing body of research indicates that gestational administration of APAP increased the risk of neurodevelopmental, reproductive and genitourinary disorders in offspring, alongside impairments in placental development. Notably, over-dosed APAP exhibits direct toxicity to endothelial cells, but there is very limited research investigating the impact of APAP on placental angiogenesis, a gap we aim to address in this study. Pregnant mice were gavaged with APAP (15, 50 and 150 mg/kg/d) from embryonic day 11.5 (E11.5) to E13.5. Administration of 150 mg/kg/d APAP leads to low birth weight (LBW) of the offspring and disordered vascular structures within the labyrinthine (Lab) layer of the placenta. This disruption is accompanied by a significant increase in Suppressor of Cytokine Signaling 3 (SOCS3) level, a negative regulator of the Janus kinase signal transducer 1 and activator of the transcription 3 (JAK1/STAT3) signaling. Meanwhile, Human umbilical vein endothelial Cells (HUVECs) with the treatment of 3 mM APAP exhibited reduced cell viability, whereas 1 mM APAP significantly affected the proliferation, migration, invasion and angiogenic capacities of HUVECs. Further, SOCS3 was up-regulated in HUVECs, accompanied by inhibition of JAK1/STAT3 pathways. Knocking-down SOCS3 in HUVECs restored the nuclear translocation of STAT3 and efficiently promoted cellular capacity of tube formation. Overall, short-term maternal administration of overdosed APAP impairs angiogenic capacities of fetal endothelial cells via SOCS3/JAK1/STAT3 pathway in the mouse placenta. This study reveals that overdose of APAP during pregnancy may adversely affect placental angiogenesis, emphasizing the importance of adhering to the safe principles of smallest effective dose for the shortest required durations.


Assuntos
Acetaminofen , Células Endoteliais da Veia Umbilical Humana , Janus Quinase 1 , Placenta , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Feminino , Gravidez , Fator de Transcrição STAT3/metabolismo , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Placenta/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Acetaminofen/toxicidade , Camundongos , Analgésicos não Narcóticos/toxicidade , Camundongos Endogâmicos C57BL , Neovascularização Patológica/induzido quimicamente , Angiogênese
2.
Environ Res ; 252(Pt 1): 118865, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583661

RESUMO

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.


Assuntos
Apoptose , Benzo(a)pireno , Células da Granulosa , NF-kappa B , Fator 2 Associado a Receptor de TNF , Feminino , Animais , Apoptose/efeitos dos fármacos , Camundongos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , NF-kappa B/metabolismo , Gravidez , Benzo(a)pireno/toxicidade , Fator 2 Associado a Receptor de TNF/metabolismo , Caspase 1/metabolismo , Disruptores Endócrinos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Humanos
3.
Sci Total Environ ; 925: 171790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508253

RESUMO

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Assuntos
Nitrilas , Reserva Ovariana , Piretrinas , Humanos , Gravidez , Animais , Feminino , Camundongos , Adulto , Animais Recém-Nascidos , Corpos de Processamento , Oócitos/metabolismo , Piretrinas/toxicidade , Piretrinas/metabolismo , Mamíferos/metabolismo , Metiltransferases , Proteínas de Ligação a RNA
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166762, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295480

RESUMO

Decidualization is a critical process for successful pregnancy. Disorders in this process are tightly associated with adverse pregnancy outcomes including spontaneous abortion. However, the potential molecular mechanisms of lncRNAs underlying this process are yet to be fully elucidated. In this study, we utilized RNA sequencing (RNA-seq) to identify differentially expressed lncRNAs during endometrial decidualization with a pregnant mouse model. Based on RNA-seq analysis, weighted gene co-expression network analysis (WGCNA) was performed to construct the lncRNA-mRNA co-expression network and to identify decidualization-associated hub lncRNAs. Through comprehensive screening and validation, we identified a novel lncRNA, RP24-315D19.10 and studied its function in primary mouse endometrial stromal cells (mESCs). lncRNA RP24-315D19.10 was highly expressed during decidualization. Knockdown of RP24-315D19.10 significantly inhibited mESCs decidualization in vitro. Mechanistically, RNA pull-down and RNA immunoprecipitation assays indicated that cytoplasmic RP24-315D19.10 could bind to hnRNPA2B1, thereby upregulating hnRNPA2B1 expression. Site-directed mutagenesis followed by biolayer interferometry analysis additionally illustrated that hnRNPA2B1 protein specifically bound to the ~-142ccccc~-167 region of the RP24-315D19.10 sequence. hnRPA2B1 deficiency impairs mESCs decidualization in vitro and we found that the inhibition in decidualization caused by RP24-315D19.10 knockdown was rescued by hnRNPA2B1 overexpression. Moreover, the expression of hnRNPA2B1 in spontaneous abortion women with deficient decidualization was significantly lower than that in healthy individuals, suggesting that hnRNPA2B1 may be involved in the development and progression of spontaneous abortion caused by decidualization failure. Collectively, our study indicates RP24-315D19.10 is a critical regulator for endometrial decidualization and RP24-315D19.10-regulated hnRNPA2B1 might be a new mark of decidualization-related spontaneous abortion.


Assuntos
Aborto Espontâneo , RNA Longo não Codificante , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
5.
Food Chem Toxicol ; 178: 113861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277016

RESUMO

Female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established in early life. Dibutyl phthalate (DBP), a popular plasticiser, is a known environmental endocrine disruptor that poses a potential threat to reproductive health. However, DBP impact on early oogenesis has been rarely reported. In this study, maternal exposure to DBP in gestation disrupted germ-cell cyst breakdown and primordial follicle assembly in foetal ovary, impairing female fertility in adulthood. Subsequently, altered autophagic flux with autophagosome accumulation was observed in DBP-exposed ovaries carrying CAG-RFP-EGFP-LC3 reporter genes, whereas autophagy inhibition by 3-methyladenine attenuated the impact of DBP on primordial folliculogenesis. Moreover, DBP exposure reduced the expression of NOTCH2 intracellular domain (NICD2) and decreased interactions between NICD2 and Beclin-l. NICD2 was observed within the autophagosomes in DBP-exposed ovaries. Furthermore, NICD2 overexpression partially restored primordial folliculogenesis. Furthermore, melatonin significantly relieved oxidative stress, decreased autophagy, and restored NOTCH2 signalling, consequently reversing the effect on folliculogenesis. Therefore, this study demonstrated that gestational DBP exposure disrupts primordial folliculogenesis by inducing autophagy, which targets NOTCH2 signalling, and this impact has long-term consequences on fertility in adulthood, strengthening the potential contribution of environmental chemicals to the development of ovarian dysfunctional diseases.


Assuntos
Dibutilftalato , Folículo Ovariano , Animais , Feminino , Camundongos , Autofagia , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Ovário , Plastificantes/metabolismo , Receptor Notch2/química , Receptor Notch2/metabolismo
6.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641866

RESUMO

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Assuntos
Benzo(a)pireno , Decídua , Gravidez , Camundongos , Feminino , Animais , Decídua/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Placenta , Diferenciação Celular , Proliferação de Células , Células Estromais/metabolismo , Poliploidia , Mamíferos
7.
Cell Biol Toxicol ; 39(3): 1077-1098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773530

RESUMO

Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.


Assuntos
Decídua , Útero , Animais , Feminino , Camundongos , Gravidez , Decídua/fisiologia , Metilação de DNA/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo , DNA Metiltransferase 3B
8.
Chem Biol Interact ; 365: 110085, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940284

RESUMO

Benzo(a)pyrene (BaP) is a well-known environmental endocrine pollutant, which has ovarian toxicity in mammals. Ovarian corpus luteum (CL), as the main source of progesterone synthesis in early pregnant female, requires a large number of mitochondria for energy supply. We previously demonstrated that BaP and its metabolite benzo(a)pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE) inhibited the ovarian melatonin receptors (MTRs) expression and decreased the levels of estrogen and progesterone during early pregnancy in mice. Emerging researches show that MTRs also exist on mitochondrial membrane and participate in the regulation of mitochondrial function. However, the relationship between BaP, MTRs on mitochondrial membrane and mitochondrial function remains unknown. Consequently, this study focuses on the effect and potential mechanism of BaP on ovarian luteal mitochondrial function during early pregnancy. We found that BaP and its metabolite BPDE decreased MTRs in early pregnant CL and luteinized KGN cells, especially in mitochondria. Furthermore, BaP or BPDE up-regulated the expression of SIRT3, Mfn2 and Drp-1, damaged mitochondrial morphology and decreased the MMP and the ATP levels, thereby causing mitochondrial dysfunction. Notably, activation of the MTRs on mitochondrial membrane by MTRs agonist ramelteon partially alleviated BPDE-induced up-regulation of SIRT3, Mfn2 and Drp-1, reduced mitochondrial fragmentation and enhanced the MMP and the ATP levels, thus restoring the expression of steroid rate-limiting enzymes. Together, these findings firstly proved that BaP and BPDE down-regulate MTRs on mitochondrial membrane, and further injure mitochondrial function in early pregnant rats' CL, which provides a new insight for understanding the exact mechanism of the BaP-induced ovarian toxicity.


Assuntos
Poluentes Ambientais , Sirtuína 3 , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Benzo(a)pireno/farmacologia , Corpo Lúteo/metabolismo , Poluentes Ambientais/metabolismo , Feminino , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Gravidez , Progesterona/metabolismo , Ratos , Receptores de Melatonina/metabolismo , Sirtuína 3/metabolismo
9.
Ann Transl Med ; 9(10): 887, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164521

RESUMO

BACKGROUND: Obesity is associated with many adverse effects on female fertility. Obese women have a higher likelihood of developing ovulatory dysfunction due to dysregulation of the hypothalamic-pituitary-ovarian axis. However, the effect of obesity on ovarian function during early pregnancy needs to be further assessed. METHODS: C57BL6/J mice were given a high-fat diet (HFD) for 12 weeks to induce obesity. An in vitro high-fat model was established by treating the human ovarian granulosa cell line KGN with oleic acid and palmitic acid. Ovarian morphology of obese mice in early pregnancy was assessed by hematoxylin and eosin staining and ovarian function was assessed by enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. Oil Red O staining and transmission electron microscopy were used to detect fatty acid accumulation. Specific markers relating to the ovarian functional mechanism were assessed by real-time PCR, western blotting, lactate detection, adenosine triphosphate (ATP) detection, biochemical analyses, and enzyme-linked immunosorbent assay. RESULTS: The results of this study showed that during early pregnancy, the number of corpus lutea, serum estradiol and progesterone levels, and the expression of the steroid biosynthesis-related protein CYP19A1 (aromatase), CYP11A1 (cholesterol side chain cleavage enzyme), and StAR (steroidogenic acute regulatory protein), were significantly increased in HFD mice. Mice fed an HFD also showed a significant increase in ovarian lipid accumulation on day 7 of pregnancy. Genes involved in fatty acid synthesis (Acsl4 and Elovl5), and fatty acid uptake and transport (Slc27a4), together with the ß-oxidation rate-limiting enzyme Cpt1a, were significantly upregulated in HFD mice. Specifically, there was abnormal elevation of ATP and aberrant expression of tricarboxylic acid cycle (TCA)- and electron transport chain (ETC)-related genes in the ovaries of pregnant HFD mice. KGN cells treated with etomoxir targeting ß-oxidation of fatty acid showed decreased TCA cycle and ETC related gene expression. The elevation of ATP and estradiol and progesterone levels was reversed. CONCLUSIONS: During early pregnancy, HFD-induced obesity increases fatty acid ß-oxidation, which in turn increases TCA cycle and ETC related gene expression, leading to increased ATP production and ovarian dysfunction.

10.
Front Cell Dev Biol ; 9: 669732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150762

RESUMO

The association between the accumulation of synthetic chemicals with estrogenic activity and risks to oogenesis has become a growing concern. This study indicates that in utero estrogen exposure can affect homologous recombination in early oogenesis and influence the reproductive potential and lifespan of female offspring. We conducted this study in developing mouse ovaries using two different models: oral doses administered to the mother, and fetal ovary cultures. Our analyses of meiotic fetal oocytes suggest that 17-ß-estradiol induces gross aberrations in prophase I events, including delayed meiotic progression, increased unrepaired DNA damage, and altered homologous recombination levels. These effects were mainly mediated by estrogen receptor 2 (ESR2) activation. Mid-gestation exposure to estrogen also led to delayed primordial folliculogenesis after birth, impaired follicle development after prepuberty, and ultimately reduced the total litter size of the offspring. This raises the concern that maternal exposures to substances activating ESR2 may compromise the fertility of the exposed female fetus.

11.
Environ Sci Pollut Res Int ; 28(31): 42024-42036, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33792845

RESUMO

Butylated hydroxytoluene (BHT), one of the most widely used synthetic phenolic antioxidants, is a popular food additive. Previous studies have reported the possible health hazards of BHT. However, BHT effects on female reproduction, especially on endometrial decidualization, are still unknown. During early pregnancy, decidualization plays important roles for embryo implantation and pregnancy establishment. This study aimed to explore the effects of BHT on endometrial decidualization in pregnant mice. The pregnant mice received BHT via intraperitoneal injection at doses of 0, 200, and 400 mg/kg/day from day 1 (D1) of pregnancy until sacrifice. Under BHT exposure, maternal body weight was significantly decreased during early pregnancy. Compared with the control group, the number of implantation sites and uterine weight were significantly reduced in the BHT groups. The uterine lumen failed to close after BHT exposure, and the decidual morphology of endometrial stromal cells was inhibited by BHT. Furthermore, BHT significantly decreased the expression of endometrial decidual markers including COX2, HOXA10, and MMP9. Notably, the levels of serum estrogen (E2) and progesterone (P4) and expression levels of uterus estrogen receptor α (ERα) and progesterone receptor (PR) during early pregnancy were significantly upregulated following BHT exposure. In conclusion, these results demonstrated that gestational BHT exposure could inhibit decidualization of mouse endometrium during early pregnancy. The disorders of reproductive hormones and changes of hormone receptor signals could be responsible for the impaired decidualization. This study provided new evidence for the deleterious effects of BHT on female reproduction and revealed the potential reproductive toxicity of synthetic phenolic antioxidants.


Assuntos
Hidroxitolueno Butilado , Decídua , Animais , Implantação do Embrião , Endométrio , Feminino , Camundongos , Gravidez , Progesterona
12.
Ecotoxicol Environ Saf ; 207: 111561, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254415

RESUMO

Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3ß signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3ß signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Corpo Lúteo/fisiologia , Melatonina/farmacologia , Animais , Antioxidantes/metabolismo , Benzo(a)pireno/metabolismo , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Disruptores Endócrinos/metabolismo , Feminino , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Progesterona/metabolismo
13.
Environ Pollut ; 259: 113915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023792

RESUMO

Benzo [a]pyrene (BaP) is a well-known endocrine disruptor. Exposure to BaP is known to impair embryo implantation. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. However, the effect of BaP on CL remains unknown. This study investigated the deleterious effects of BaP on the structure and function of CL during early pregnancy. Pregnant rats were dosed with BaP at 0.2 mg.kg-1. d from day 1 (D1) to day 9 (D9) of gestation. We found that BaP reduced the number of CLs, disturbed the secretion of steroid and impacted the luteal vascular networks. BaP significantly decreased the angiogenesis factor (VEGFR, Ang-1 and Tie2) and increased the anti-angiogenic factor THBS1. Inhibited THBS1 function by LSKL partially rescued the angiogenesis defect caused by BaP. In vitro, BaP metabolite BPDE also interfered the expression levels of angiogenesis-related factors in HUVECs and impaired the angiogenesis, whereas supplemented with rAng-1 can alleviate the anti-angiogenic effect of BPDE. Furthermore, Notch signaling molecules, including Notch1, Dll4, Jag1 and Hey2, which are essential for the establishment and maturation of vascular networks, were affected by BaP exposure. Collectively, BaP broke the molecular regulatory balance between luteal angiogenesis and vascular maturation, impaired the construction of luteal vascular networks, and further affected luteal formation and endocrine function during early pregnancy. Our findings might provide new insight into the relationship between BaP and luteal insufficiency in early pregnancy. These data also give a new line of evidence for curtailing BaP emissions and protecting the women of childbearing age from occupational exposure.


Assuntos
Benzo(a)pireno/toxicidade , Corpo Lúteo/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Animais , Corpo Lúteo/fisiologia , Implantação do Embrião , Disruptores Endócrinos/toxicidade , Feminino , Gravidez , Progesterona , Ratos
14.
J Hazard Mater ; 389: 121830, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31836366

RESUMO

Cerium dioxide nanoparticles (CeO2NPs) has been widely used in many fields, and also recommended as a promising carrier for cancer targeted drugs in human medicine for its excellent properties. However, its biological safety to human health remains controversial. In this study, we propose a mouse model exposed to CeO2NPs during early pregnancy, to clarify the effect of maternal CeO2NPs exposure and related molecular mechanism. Pregnant mice are injected intravenously with CeO2NPs by once a day on D5, D6, and D7. The effects of CeO2NPs exposure on pregnancy outcomes are observed on D8, D9, D10 and D12. The results show that CeO2NPs exposure during early pregnancy would lead to poor pregnancy outcomes. Further study find that low-quality decidualization, including the imbalance of trophoblast invasion regulators secreted by decidual cells and abnormal recruitment and differentiation of uNK cells, leads to subsequent biological negative "ripple effects", including placental dysfunction, fetal loss or growth restriction. This study broadens the understanding of the biological safety of CeO2NPs, and provide clues for the prevention of its negative biological effects. Improving the function of uNK cells can be used as one of the therapeutic targets to prevent negative effects of CeO2NPs on pregnancy.


Assuntos
Cério/toxicidade , Exposição Materna/efeitos adversos , Nanopartículas/toxicidade , Placenta/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Cério/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Tamanho da Partícula , Placenta/metabolismo , Placenta/patologia , Gravidez , Resultado da Gravidez , Propriedades de Superfície , Distribuição Tecidual , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , Útero/irrigação sanguínea , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos
15.
Environ Pollut ; 252(Pt A): 388-398, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158667

RESUMO

Dibutyl phthalate (DBP), one of the most widely used plasticizers, is a known environmental endocrine disruptor that impairs male and female fertility. In this study, oral administration of DBP was given to pregnant mice on 14.5 days post coitus (dpc) for 3 days; and additionally, DBP was added into the culture of 14.5 dpc fetal ovaries for 3 days. DBP exposure during gestation disturbed the progression of meiotic prophase I of mouse oocytes, specifically from the zygotene to pachytene stages. Meanwhile, the DBP-exposed pachytene oocytes showed increased homologous recombination sites and unrepaired DNA damage. Furthermore, DBP caused DNA damage by increasing oxidative stress, decreased the expression of multiple critical meiotic regulators, and consequently induced oocyte apoptosis. Moreover, the effect of DBP on meiosis I prophase involved estrogen receptors α and ß. Collectively, these results demonstrated a set of meiotic defects in DBP-exposed fetal oocytes. As aberrations in homologous recombination can result in aneuploid gametes and embryos, this study provides new support for the deleterious effects of phthalates.


Assuntos
Dibutilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Recombinação Homóloga/efeitos dos fármacos , Prófase Meiótica I/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Plastificantes/toxicidade , Aneuploidia , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Prófase Meiótica I/genética , Camundongos , Oócitos/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Gravidez
16.
J Cell Physiol ; 234(7): 11119-11129, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30443902

RESUMO

Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg-1 ·day -1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and ß-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and ß-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/ß-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Endométrio/citologia , Células Estromais/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Gravidez , Células Estromais/metabolismo , Proteína Wnt-5a/genética
17.
J Mol Histol ; 49(6): 589-597, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30298448

RESUMO

Folate deficiency is a major risk factor of birth defects. Mechanistic studies on folate deficiency resulting in birth defects have mainly focused on fetal development. There have been few studies on folate deficiency from the point of view of the mother's uterus. In our previous study, we demonstrated that folate deficiency inhibits apoptosis of decidual cells, thereby restraining decidualization of the endometrium and impairing pregnancy. In this study, we further investigated the potential mechanism by which folate deficiency decreases endometrial apoptosis during decidualization. To investigate whether endometrium autophagy was inhibited under folate deficiency during decidualization, we performed real-time PCR for endometrial LC3 and P62 on day 6 (D6) to D8 of pregnancy in mice, and both were significantly changed compared to non-folate-deficient mice. Western blots showed that LC3-II and P62 were also changed in folate-deficient mice. Compared with control mice, a few punctuate LC3-II structures were detected in the folate deficiency group by immunofluorescence. Transmission electron micrographs of decidual cells on D8 showed that there were no evident autophagosomes in the folate deficiency group. In addition, apoptosis-related protein analysis by western blotting, TUNEL staining and flow cytometry showed that decreased endometrial apoptosis on D8 of pregnancy under folate deficiency was reversed after treatment with rapamycin, an autophagy inducer. ROS measurement showed that the endometrium ROS level was reduced by folate deficiency and that rapamycin reversed this effect on day 8 of pregnancy. All the results suggest that inhibiting endometrial autophagy may be implicated in the decreased endometrial apoptosis under folate deficiency during decidualization.


Assuntos
Apoptose , Autofagia , Decídua/metabolismo , Deficiência de Ácido Fólico/fisiopatologia , Animais , Endométrio/patologia , Feminino , Camundongos , Gravidez , Espécies Reativas de Oxigênio , Fatores de Tempo , Útero/fisiopatologia
18.
Stem Cells Int ; 2017: 3508907, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491095

RESUMO

Age-related regression in hematopoietic stem/progenitor cells (HSC/HPCs) limits replenishment of the blood and immune system and hence contributes to hematopoietic diseases and declined immunity. In this study, we employed D-gal-induced aging mouse model and observed the antiaging effects of Angelica Sinensis Polysaccharide (ASP), a major active ingredient in dong quai (Chinese Angelica Sinensis), on the Sca-1+ HSC/HPCs in vivo. ASP treatment prevents HSC/HPCs senescence with decreased AGEs levels in the serum, reduced SA-ß-Gal positive cells, and promoted CFU-Mix formation in the D-gal administrated mouse. We further found that multiple mechanisms were involved: (1) ASP treatment prevented oxidative damage as total antioxidant capacity was increased and levels of reactive oxygen species (ROS), 8-OHdG, and 4-HNE were declined, (2) ASP reduced the expression of γ-H2A.X which is a DNA double strand breaks (DSBs) marker and decreased the subsequent ectopic expressions of effectors in p16Ink4a-RB and p19Arf-p21Cip1/Waf senescent pathways, and (3) ASP inhibited the excessive activation of Wnt/ß-catenin signaling in aged HSC/HPCs, as the expressions of ß-catenin, phospho-GSK-3ß, and TCF-4 were decreased, and the cyto-nuclear translocation of ß-catenin was inhibited. Moreover, compared with the positive control of Vitamin E, ASP exhibited a better antiaging effect and a weaker antioxidation ability, suggesting a novel protective role of ASP in the hematopoietic system.

19.
Environ Pollut ; 222: 523-531, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28043741

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.


Assuntos
Benzo(a)pireno/toxicidade , Decídua/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Decídua/crescimento & desenvolvimento , Regulação para Baixo/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Exposição Ambiental , Estradiol/metabolismo , Feminino , Camundongos , Gravidez , Progesterona , Reprodução/efeitos dos fármacos , Útero/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Stem Cells Int ; 2015: 954120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106432

RESUMO

The researches in the dynamic changes of the progress of HSCs aging are very limited and necessary. In this study, male C57BL/6 mice were divided into 5 groups by age. We found that the superoxide damage of HSPCs started to increase from the middle age (6 months old), with notably reduced antioxidation ability. In accordance with that, the senescence of HSPCs also started from the middle age, since the self-renewal and differentiation ability remarkably decreased, and senescence-associated markers SA-ß-GAL increased in the 6-month-old and the older groups. Interestingly, the telomere length and telomerase activity increased to a certain degree in the 6-month-old group. It suggested an intrinsic spontaneous ability of HSPCs against aging. It may provide a theoretical and experimental foundation for better understanding the senescence progress of HSPCs. And the dynamic biological characteristics of HSPCs senescence may also contribute to the clinical optimal time for antiaging drug intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA