Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(5): 1156-1160, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856679

RESUMO

The contribution of cellular senescence to a diverse range of biological processes, including normal physiology, ageing, and pathology were long overlooked but have now taken centre stage. In this Editorial, we will briefly outline the review and original work articles contained in The FEBS Journal's Special Issue on Senescence in Ageing and Disease. It is beginning to be appreciated that senescent cells can exert both beneficial and adverse effects following tissue injury. Additionally, while these cells play critical roles for maintaining a healthy physiology, they also promote ageing and certain pathological conditions (including developmental disorders). Progress has been made in re-defining and identifying senescent cells, especially in slow-proliferating or terminally differentiated tissues, such as the brain and cardiovascular system. Novel approaches and techniques for isolating senescent cells will greatly increase our appreciation for senescent properties in tissues. The inter-organ communication between senescent cells and other residents of the tissue microenvironment, via the senescence-associated secretory phenotype (SASP), is a focus of several reviews in this Special Issue. The importance of the SASP in promoting tumour development and the evolution of SARS CoV-2 variants is also highlighted. In one of the two original articles included in the issue, the impact of dietary macronutrients and the presence of senescent cells in mice is investigated. Lastly, we continue to deepen our understanding on the use of senolytics and senomorphics to specifically target senescent cells or their secreted components, respectively, which is discussed in several of the reviews included here.


Assuntos
COVID-19 , Animais , Camundongos , Senescência Celular , Envelhecimento , Diferenciação Celular , Encéfalo
2.
Nature ; 613(7942): 169-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544018

RESUMO

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Assuntos
Envelhecimento , Senescência Celular , Inflamação , Músculo Esquelético , Regeneração , Nicho de Células-Tronco , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Células-Tronco/fisiologia , Fibrose/fisiopatologia , Nicho de Células-Tronco/fisiologia , Transcriptoma , Cromatina/genética , Gerociência
3.
Aging Biol ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38500537

RESUMO

On April 28th, 2022, a group of scientific leaders gathered virtually to discuss molecular and cellular mechanisms of responses to stress. Conditions of acute, high-intensity stress are well documented to induce a series of adaptive responses that aim to promote survival until the stress has dissipated and then guide recovery. However, high-intensity or persistent stress that goes beyond the cell's compensatory capacity are countered with resilience strategies that are not completely understood. These adaptative strategies, which are an essential component of the study of aging biology, were the theme of the meeting. Specific topics discussed included mechanisms of proteostasis, such as the unfolded protein response (UPR) and the integrated stress response (ISR), as well as mitochondrial stress and lysosomal stress responses. Attention was also given to regulatory mechanisms and associated biological processes linked to age-related conditions, such as muscle loss and regeneration, cancer, senescence, sleep quality, and degenerative disease, with a general focus on the relevance of stress responses to frailty. We summarize the concepts and potential future directions that emerged from the discussion and highlight their relevance to the study of aging and age-related chronic diseases.

4.
Nat Aging ; 2: 851-866, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36438588

RESUMO

Cellular senescence is a stable type of cell cycle arrest triggered by different stresses. As such, senescence drives age-related diseases and curbs cellular replicative potential. Here, we show that 3-deazaadenosine (3DA), an S-adenosyl homocysteinase (AHCY) inhibitor, alleviates replicative and oncogene-induced senescence. 3DA-treated senescent cells showed reduced global Histone H3 Lysine 36 trimethylation (H3K36me3), an epigenetic modification that marks the bodies of actively transcribed genes. By integrating transcriptome and epigenome data, we demonstrate that 3DA treatment affects key factors of the senescence transcriptional program. Remarkably, 3DA treatment alleviated senescence and increased the proliferative and regenerative potential of muscle stem cells from very old mice in vitro and in vivo. Moreover, ex vivo 3DA treatment was sufficient to enhance the engraftment of human umbilical cord blood (UCB) cells in immunocompromised mice. Together, our results identify 3DA as a promising drug enhancing the efficiency of cellular therapies by restraining senescence.


Assuntos
Senescência Celular , Histonas , Humanos , Camundongos , Animais , Histonas/genética , Senescência Celular/genética , Tubercidina/farmacologia , Epigênese Genética
5.
Circ Res ; 130(3): 418-431, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113662

RESUMO

The heart is a never-stopping engine that relies on a formidable pool of mitochondria to generate energy and propel pumping. Because dying cardiomyocytes cannot be replaced, this high metabolic rate creates the challenge of preserving organelle fitness and cell function for life. Here, we provide an immunologist's perspective on how the heart solves this challenge, which is in part by incorporating macrophages as an integral component of the myocardium. Cardiac macrophages surround cardiomyocytes and capture dysfunctional mitochondria that these cells eject to the milieu, effectively establishing a client cell-support cell interaction. We refer to this heterologous partnership as heterophagy. Notably, this process shares analogies with other biological systems, is essential for proteostasis and metabolic fitness of cardiomyocytes, and unveils a remarkable degree of dependence of the healthy heart on immune cells for everyday function.


Assuntos
Autofagia , Macrófagos/imunologia , Miócitos Cardíacos/metabolismo , Fagocitose , Animais , Humanos
6.
Science ; 374(6565): 355-359, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648328

RESUMO

Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.


Assuntos
Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Regeneração , Sarcômeros/fisiologia , Animais , Cálcio/metabolismo , Dineínas/metabolismo , Camundongos , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 12(6): 1879-1896, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704386

RESUMO

BACKGROUND: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.


Assuntos
Fragilidade , Glucosefosfato Desidrogenase , Animais , Glucose , Glucose 1-Desidrogenase , Glucosefosfato Desidrogenase/genética , Camundongos , Músculos
8.
Cell Death Dis ; 12(8): 729, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294700

RESUMO

Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Receptor TIE-2/metabolismo , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Proteína Morfogenética Óssea 2/sangue , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcinose/fisiopatologia , Condrogênese , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/patologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/diagnóstico por imagem , Osteogênese , Tomografia Computadorizada por Raios X
9.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106654

RESUMO

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células , Autorrenovação Celular , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores Etários , Animais , Cardiotoxinas/toxicidade , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/transplante , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/transplante , Transdução de Sinais , Nicho de Células-Tronco
10.
Circ Res ; 127(11): e252-e270, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32921258

RESUMO

RATIONALE: The molecular mechanisms underlying the formation of coronary arteries during development and during cardiac neovascularization after injury are poorly understood. However, a detailed description of the relevant signaling pathways and functional TFs (transcription factors) regulating these processes is still incomplete. OBJECTIVE: The goal of this study is to identify novel cardiac transcriptional mechanisms of coronary angiogenesis and vessel remodeling by defining the molecular signatures of coronary vascular endothelial cells during these complex processes. METHODS AND RESULTS: We demonstrate that Nes-gfp and Nes-CreERT2 transgenic mouse lines are novel tools for studying the emergence of coronary endothelium and targeting sprouting coronary vessels (but not ventricular endocardium) during development. Furthermore, we identify Sox17 as a critical TF upregulated during the sprouting and remodeling of coronary vessels, visualized by a specific neural enhancer from the Nestin gene that is strongly induced in developing arterioles. Functionally, genetic-inducible endothelial deletion of Sox17 causes deficient cardiac remodeling of coronary vessels, resulting in improper coronary artery formation. CONCLUSIONS: We demonstrated that Sox17 TF regulates the transcriptional activation of Nestin's enhancer in developing coronary vessels while its genetic deletion leads to inadequate coronary artery formation. These findings identify Sox17 as a critical regulator for the remodeling of coronary vessels in the developing heart.


Assuntos
Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Neovascularização Fisiológica , Nestina/metabolismo , Fatores de Transcrição SOXF/metabolismo , Remodelação Vascular , Animais , Linhagem da Célula , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Vasos Coronários/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Nestina/genética , Fatores de Transcrição SOXF/genética , Transcrição Gênica , Ativação Transcricional , Transcriptoma
11.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937105

RESUMO

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Animais , Apoptose , Autofagia , Feminino , Coração/fisiologia , Homeostase , Humanos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Fagocitose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo
12.
EMBO Rep ; 21(4): e49075, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32107853

RESUMO

Macrophages are characterized by a high plasticity in response to changes in tissue microenvironment, which allows them to acquire different phenotypes and to exert essential functions in complex processes, such as tissue regeneration. Here, we report that the membrane protein Cripto plays a key role in shaping macrophage plasticity in skeletal muscle during regeneration and disease. Conditional deletion of Cripto in the myeloid lineage (CriptoMy-LOF ) perturbs MP plasticity in acutely injured muscle and in mouse models of Duchenne muscular dystrophy (mdx). Specifically, CriptoMy-LOF macrophages infiltrate the muscle, but fail to properly expand as anti-inflammatory CD206+ macrophages, which is due, at least in part, to aberrant activation of TGFß/Smad signaling. This reduction in macrophage plasticity disturbs vascular remodeling by increasing Endothelial-to-Mesenchymal Transition (EndMT), reduces muscle regenerative potential, and leads to an exacerbation of the dystrophic phenotype. Thus, in muscle-infiltrating macrophages, Cripto is required to promote the expansion of the CD206+ anti-inflammatory macrophage type and to restrict the EndMT process, providing a direct functional link between this macrophage population and endothelial cells.


Assuntos
Células Endoteliais , Distrofia Muscular de Duchenne , Animais , Macrófagos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético
13.
Nat Commun ; 11(1): 189, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31929511

RESUMO

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Assuntos
Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Proteínas Nucleares/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Autofagia , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Nucleares/genética , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/prevenção & controle
14.
Methods Mol Biol ; 2045: 13-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30771188

RESUMO

The maintenance of adult stem cells in their normal quiescent state depends on intrinsic factors and extrinsic signals originating from their microenvironment (also known as the stem cell niche). In skeletal muscle, its stem cells (satellite cells) lose their regenerative potential with aging, and this has been attributed, at least in part, to both age-associated changes in the satellite cells as in the niche cells, which include resident fibro-adipogenic progenitors (FAPs), macrophages, and endothelial cells, among others. To understand the regenerative decline of skeletal muscle with aging, there is a need for methods to specifically isolate stem and niche cells from resting muscle. Here we describe a fluorescence-activated cell sorting (FACS) protocol to simultaneously isolate discrete populations of satellite cells and niche cells from skeletal muscle of aging mice.


Assuntos
Células-Tronco Adultas/metabolismo , Citometria de Fluxo/métodos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Nicho de Células-Tronco/genética , Células-Tronco Adultas/citologia , Envelhecimento , Animais , Anticorpos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Músculo Esquelético/citologia , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Células Satélites de Músculo Esquelético/citologia , Nicho de Células-Tronco/fisiologia , Fluxo de Trabalho
16.
Cell Stem Cell ; 20(5): 593-608, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475885

RESUMO

Adult stem cells, particularly those resident in tissues with little turnover, are largely quiescent and only activate in response to regenerative demands, while embryonic stem cells continuously replicate, suggesting profoundly different regulatory mechanisms within distinct stem cell types. In recent years, evidence linking metabolism, mitochondrial dynamics, and protein homeostasis (proteostasis) as fundamental regulators of stem cell function has emerged. Here, we discuss new insights into how these networks control potency, self-renewal, differentiation, and aging of highly proliferative embryonic stem cells and quiescent adult stem cells, with a focus on hematopoietic and muscle stem cells and implications for anti-aging research.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Autofagia/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
17.
Semin Cell Dev Biol ; 64: 181-190, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27670721

RESUMO

Duchenne muscular dystrophy (DMD) is one of the most devastating neuromuscular genetic diseases caused by the absence of dystrophin. The continuous episodes of muscle degeneration and regeneration in dystrophic muscle are accompanied by chronic inflammation and fibrosis deposition, which exacerbate disease progression. Thus, in addition of investigating strategies to cure the primary defect by gene/cell therapeutic strategies, increasing efforts are being placed on identifying the causes of the substitution of muscle by non-functional fibrotic tissue in DMD, aiming to attenuate its severity. Congenital muscular dystrophies (CMDs) are early-onset diseases in which muscle fibrosis is also present. Here we review the emerging findings on the mechanisms that underlie fibrogenesis in muscular dystrophies, and potential anti-fibrotic treatments.


Assuntos
Distrofias Musculares/patologia , Pesquisa Translacional Biomédica , Idade de Início , Animais , Fibrose , Humanos , Macrófagos/patologia , Modelos Biológicos , Distrofias Musculares/terapia
18.
Skelet Muscle ; 6: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26783424

RESUMO

Skeletal muscle has a remarkable capacity to regenerate by virtue of its resident stem cells (satellite cells). This capacity declines with aging, although whether this is due to extrinsic changes in the environment and/or to cell-intrinsic mechanisms associated to aging has been a matter of intense debate. Furthermore, while some groups support that satellite cell aging is reversible by a youthful environment, others support cell-autonomous irreversible changes, even in the presence of youthful factors. Indeed, whereas the parabiosis paradigm has unveiled the environment as responsible for the satellite cell functional decline, satellite cell transplantation studies support cell-intrinsic deficits with aging. In this review, we try to shed light on the potential causes underlying these discrepancies. We propose that the experimental paradigm used to interrogate intrinsic and extrinsic regulation of stem cell function may be a part of the problem. The assays deployed are not equivalent and may overburden specific cellular regulatory processes and thus probe different aspects of satellite cell properties. Finally, distinct subsets of satellite cells may be under different modes of molecular control and mobilized preferentially in one paradigm than in the other. A better understanding of how satellite cells molecularly adapt during aging and their context-dependent deployment during injury and transplantation will lead to the development of efficacious compensating strategies that maintain stem cell fitness and tissue homeostasis throughout life.


Assuntos
Senescência Celular , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fenótipo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Nicho de Células-Tronco
19.
Nature ; 529(7584): 37-42, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738589

RESUMO

During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.


Assuntos
Autofagia/fisiologia , Senescência Celular , Células Satélites de Músculo Esquelético/citologia , Envelhecimento/patologia , Animais , Contagem de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Epigênese Genética , Homeostase , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Organelas/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Sarcopenia/patologia , Sarcopenia/prevenção & controle , Células Satélites de Músculo Esquelético/patologia
20.
Trends Endocrinol Metab ; 26(9): 449-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250053

RESUMO

Defective muscle regeneration is usually accompanied by excessive matrix accumulation (fibrosis). A recent study reveals how this fibrotic process is prevented to allow successful regeneration, through a timely interplay between macrophages and fibro/adipogenic progenitor cells. This has biomedical relevance for fibrotic muscular dystrophies.


Assuntos
Fibrose/patologia , Macrófagos , Músculos/patologia , Regeneração , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA