Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982650

RESUMO

Antiparkinsonian carotid body (CB) cell therapy has been proven to be effective in rodent and nonhuman primate models of Parkinson's disease (PD), exerting trophic protection and restoration of the dopaminergic nigrostriatal pathway. These neurotrophic actions are mediated through the release of high levels of glial-cell-line-derived neurotrophic factor (GDNF) by the CB transplant. Pilot clinical trials have also shown that CB autotransplantation can improve motor symptoms in PD patients, although its effectiveness is affected by the scarcity of the grafted tissue. Here, we analyzed the antiparkinsonian efficacy of in vitro-expanded CB dopaminergic glomus cells. Intrastriatal xenografts of rat CB neurospheres were shown to protect nigral neurons from degeneration in a chronic MPTP mouse PD model. In addition, grafts performed at the end of the neurotoxic treatment resulted in the repair of striatal dopaminergic terminals through axonal sprouting. Interestingly, both neuroprotective and reparative effects induced by in vitro-expanded CB cells were similar to those previously reported by the use of CB transplants. This action could be explained because stem-cell-derived CB neurospheres produce similar amounts of GDNF compared to native CB tissue. This study provides the first evidence that in vitro-expanded CB cells could be a clinical option for cell therapy in PD.


Assuntos
Corpo Carotídeo , Doença de Parkinson , Camundongos , Ratos , Humanos , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Corpo Carotídeo/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transplante de Células , Substância Negra/metabolismo , Modelos Animais de Doenças , Corpo Estriado/metabolismo
2.
J Chem Neuroanat ; 71: 1-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698402

RESUMO

In the nervous system, BCL11B is crucial for the development of deep layer corticospinal projection neurons and striatal medium spiny neurons and is often used as a marker for the aforementioned cell types. However, the expression of BCL11B in subtypes of non-excitatory neurons in the primary somatosensory cortex (S1) has not been reported in the mouse. In this study we show that BCL11B is extensively expressed in S1 GABAergic interneurons, throughout the three main subgroups (somatostatin-, parvalbumin- and 5HT3a-expresssing). Almost all BCL11B positive cells in the upper S1 layers were GABAergic interneurons and surprisingly, almost 40% of the BCL11B positive neurons in layer V were GABAergic interneurons. Single cell mRNA sequencing data revealed higher Bcl11b expression in S1 interneurons compared to deep layer pyramidal neurons. The highest levels of Bcl11b expression were found within the 5HT3a population, specifically in putative neurogliaform interneuron subclasses (5HT3a-positive but not expressing vasoactive intestinal peptide). In the light of our findings we suggest caution using BCL11B as a single marker to identify neurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Proteínas Repressoras/metabolismo , Córtex Somatossensorial/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Repressoras/genética , Somatostatina/metabolismo , Proteínas Supressoras de Tumor/genética , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA