Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Oncogenesis ; 12(1): 6, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755015

RESUMO

Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.

3.
Cell Death Dis ; 13(12): 1046, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522309

RESUMO

Interleukin-8 (IL-8/CXCL8) is a pro-angiogenic and pro-inflammatory chemokine that plays a role in cancer development. Non-small cell lung carcinoma (NSCLC) produces high amounts of IL-8, which is associated with poor prognosis and resistance to chemo-radio and immunotherapy. However, the signaling pathways that lead to IL-8 production in NSCLC are unresolved. Here, we show that expression and release of IL-8 are regulated autonomously by TRAIL death receptors in several squamous and adenocarcinoma NSCLC cell lines. NSCLC constitutively secrete IL-8, which could be further enhanced by glucose withdrawal or by treatment with TRAIL or TNFα. In A549 cells, constitutive and inducible IL-8 production was dependent on NF-κB and MEK/ERK MAP Kinases. DR4 and DR5, known regulators of these signaling pathways, participated in constitutive and glucose deprivation-induced IL-8 secretion. These receptors were mainly located intracellularly. While DR4 signaled through the NF-κB pathway, DR4 and DR5 both regulated the ERK-MAPK and Akt pathways. FADD, caspase-8, RIPK1, and TRADD also regulated IL-8. Analysis of mRNA expression data from patients indicated that IL-8 transcripts correlated with TRAIL, DR4, and DR5 expression levels. Furthermore, TRAIL receptor expression levels also correlated with markers of angiogenesis and neutrophil infiltration in lung squamous carcinoma and adenocarcinoma. Collectively, these data suggest that TRAIL receptor signaling contributes to a pro-tumorigenic inflammatory signature associated with NSCLC.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-8/genética , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Glucose , Apoptose
4.
Cell Death Dis ; 13(8): 730, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002449

RESUMO

On glucose restriction, epithelial cells can undergo entosis, a cell-in-cell cannibalistic process, to allow considerable withstanding to this metabolic stress. Thus, we hypothesized that reduced protein glycosylation might participate in the activation of this cell survival pathway. Glucose deprivation promoted entosis in an MCF7 breast carcinoma model, as evaluated by direct inspection under the microscope, or revealed by a shift to apoptosis + necrosis in cells undergoing entosis treated with a Rho-GTPase kinase inhibitor (ROCKi). In this context, curbing protein glycosylation defects with N-acetyl-glucosamine partially rescued entosis, whereas limiting glycosylation in the presence of glucose with tunicamycin or NGI-1, but not with other unrelated ER-stress inducers such as thapsigargin or amino-acid limitation, stimulated entosis. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M; PCK2) is upregulated by glucose deprivation, thereby enhancing cell survival. Therefore, we presumed that PEPCK-M could play a role in this process by offsetting key metabolites into glycosyl moieties using alternative substrates. PEPCK-M inhibition using iPEPCK-2 promoted entosis in the absence of glucose, whereas its overexpression inhibited entosis. PEPCK-M inhibition had a direct role on total protein glycosylation as determined by Concanavalin A binding, and the specific ratio of fully glycosylated LAMP1 or E-cadherin. The content of metabolites, and the fluxes from 13C-glutamine label into glycolytic intermediates up to glucose-6-phosphate, and ribose- and ribulose-5-phosphate, was dependent on PEPCK-M content as measured by GC/MS. All in all, we demonstrate for the first time that protein glycosylation defects precede and initiate the entosis process and implicates PEPCK-M in this survival program to dampen the consequences of glucose deprivation. These results have broad implications to our understanding of tumor metabolism and treatment strategies.


Assuntos
Neoplasias da Mama , Entose , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Feminino , Glucose/metabolismo , Glicosilação , Humanos
5.
Cancers (Basel) ; 13(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638221

RESUMO

Recent technological advances and the application of high-throughput mutation and transcriptome analyses have improved our understanding of cancer diseases, including non-small cell lung cancer. For instance, genomic profiling has allowed the identification of mutational events which can be treated with specific agents. However, detection of DNA alterations does not fully recapitulate the complexity of the disease and it does not allow selection of patients that benefit from chemo- or immunotherapy. In this context, transcriptional profiling has emerged as a promising tool for patient stratification and treatment guidance. For instance, transcriptional profiling has proven to be especially useful in the context of acquired resistance to targeted therapies and patients lacking targetable genomic alterations. Moreover, the comprehensive characterization of the expression level of the different pathways and genes involved in tumor progression is likely to better predict clinical benefit from different treatments than single biomarkers such as PD-L1 or tumor mutational burden in the case of immunotherapy. However, intrinsic technical and analytical limitations have hindered the use of these expression signatures in the clinical setting. In this review, we will focus on the data reported on molecular classification of non-small cell lung cancer and discuss the potential of transcriptional profiling as a predictor of survival and as a patient stratification tool to further personalize treatments.

6.
Br J Cancer ; 125(10): 1365-1376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34588615

RESUMO

BACKGROUND: There is no effective therapy for patients with malignant pleural mesothelioma (MPM) who progressed to platinum-based chemotherapy and immunotherapy. METHODS: We aimed to investigate the antitumor activity of CDK4/6 inhibitors using in vitro and in vivo preclinical models of MPM. RESULTS: Based on publicly available transcriptomic data of MPM, patients with CDK4 or CDK6 overexpression had shorter overall survival. Treatment with abemaciclib or palbociclib at 100 nM significantly decreased cell proliferation in all cell models evaluated. Both CDK4/6 inhibitors significantly induced G1 cell cycle arrest, thereby increasing cell senescence and increased the expression of interferon signalling pathway and tumour antigen presentation process in culture models of MPM. In vivo preclinical studies showed that palbociclib significantly reduced tumour growth and prolonged overall survival using distinct xenograft models of MPM implanted in athymic mice. CONCLUSIONS: Treatment of MPM with CDK4/6 inhibitors decreased cell proliferation, mainly by promoting cell cycle arrest at G1 and by induction of cell senescence. Our preclinical studies provide evidence for evaluating CDK4/6 inhibitors in the clinic for the treatment of MPM.


Assuntos
Aminopiridinas/administração & dosagem , Benzimidazóis/administração & dosagem , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Mesotelioma Maligno/tratamento farmacológico , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Idoso , Aminopiridinas/farmacologia , Animais , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466674

RESUMO

Cancer cells escape, suppress and exploit the host immune system to sustain themselves, and the tumor microenvironment (TME) actively dampens T cell function by various mechanisms. Over the last years, new immunotherapeutic approaches, such as adoptive chimeric antigen receptor (CAR) T cell therapy and immune checkpoint inhibitors, have been successfully applied for refractory malignancies that could only be treated in a palliative manner previously. Engaging the anti-tumor activity of the immune system, including CAR T cell therapy to target the CD19 B cell antigen, proved to be effective in acute lymphocytic leukemia. In low-grade hematopoietic B cell malignancies, such as chronic lymphocytic leukemia, clinical outcomes have been tempered by cancer-induced T cell dysfunction characterized in part by a state of metabolic lethargy. In multiple myeloma, novel antigens such as BCMA and CD38 are being explored for CAR T cells. In solid cancers, T cell-based immunotherapies have been applied successfully to melanoma and lung cancers, whereas application in e.g., breast cancer lags behind and is modestly effective as yet. The main hurdles for CAR T cell immunotherapy in solid tumors are the lack of suitable antigens, anatomical inaccessibility, and T cell anergy due to immunosuppressive TME. Given the wide range of success and failure of immunotherapies in various cancer types, it is crucial to comprehend the underlying similarities and distinctions in T cell dysfunction. Hence, this review aims at comparing selected, distinct B cell-derived versus solid cancer types and at describing means by which malignant cells and TME might dampen T cell anti-tumor activity, with special focus on immunometabolism. Drawing a meaningful parallel between the efficacy of immunotherapy and the extent of T cell dysfunction will shed light on areas where we can improve immune function to battle cancer.

8.
Autophagy ; 17(6): 1349-1366, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397857

RESUMO

ABTL0812 is a first-in-class small molecule with anti-cancer activity, which is currently in clinical evaluation in a phase 2 trial in patients with advanced endometrial and squamous non-small cell lung carcinoma (NCT03366480). Previously, we showed that ABTL0812 induces TRIB3 pseudokinase expression, resulting in the inhibition of the AKT-MTORC1 axis and macroautophagy/autophagy-mediated cancer cell death. However, the precise molecular determinants involved in the cytotoxic autophagy caused by ABTL0812 remained unclear. Using a wide range of biochemical and lipidomic analyses, we demonstrated that ABTL0812 increases cellular long-chain dihydroceramides by impairing DEGS1 (delta 4-desaturase, sphingolipid 1) activity, which resulted in sustained ER stress and activated unfolded protein response (UPR) via ATF4-DDIT3-TRIB3 that ultimately promotes cytotoxic autophagy in cancer cells. Accordingly, pharmacological manipulation to increase cellular dihydroceramides or incubation with exogenous dihydroceramides resulted in ER stress, UPR and autophagy-mediated cancer cell death. Importantly, we have optimized a method to quantify mRNAs in blood samples from patients enrolled in the ongoing clinical trial, who showed significant increased DDIT3 and TRIB3 mRNAs. This is the first time that UPR markers are reported to change in human blood in response to any drug treatment, supporting their use as pharmacodynamic biomarkers for compounds that activate ER stress in humans. Finally, we found that MTORC1 inhibition and dihydroceramide accumulation synergized to induce autophagy and cytotoxicity, phenocopying the effect of ABTL0812. Given the fact that ABTL0812 is under clinical development, our findings support the hypothesis that manipulation of dihydroceramide levels might represents a new therapeutic strategy to target cancer.Abbreviations: 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATG: autophagy related; ATF4: activating transcription factor 4; Cer: ceramide; DDIT3: DNA damage inducible transcript 3; DEGS1: delta 4-desaturase, sphingolipid 1; dhCer: dihydroceramide; EIF2A: eukaryotic translation initiation factor 2 alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; NSCLC: non-small cell lung cancer; THC: Δ9-tetrahydrocannabinol; TRIB3: tribbles pseudokinase 3; XBP1: X-box binding protein 1; UPR: unfolded protein response.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Ceramidas/farmacologia , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico
9.
Sci Rep ; 10(1): 11954, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686726

RESUMO

Chemokine (C-C motif) ligand 2 (CCL2) has been associated with chronic metabolic diseases. We aimed to investigate whether Ccl2 gene overexpression is involved in the regulation of signaling pathways in metabolic organs. Biochemical and histological analyses were used to explore tissue damage in cisgenic mice that overexpressed the Ccl2 gene. Metabolites from energy and one-carbon metabolism in liver and muscle extracts were measured by targeted metabolomics. Western blot analysis was used to explore the AMP-activated protein kinase (AMPK) and mammalian target of rapamycin pathways. Ccl2 overexpression resulted in steatosis, decreased AMPK activity and altered mitochondrial dynamics in the liver. These changes were associated with decreased oxidative phosphorylation and alterations in the citric acid cycle and transmethylation. In contrast, AMPK activity and its downstream mediators were increased in muscle, where we observed an increase in oxidative phosphorylation and increased concentrations of different metabolites associated with ATP synthesis. In conclusion, Ccl2 overexpression induces distinct metabolic alterations in the liver and muscle that affect mitochondrial dynamics and the regulation of energy sensors involved in cell homeostasis. These data suggest that CCL2 may be a therapeutic target in metabolic diseases.


Assuntos
Quimiocina CCL2/genética , Metabolismo Energético , Expressão Gênica , Fígado/metabolismo , Músculos/metabolismo , Animais , Autofagia , Biópsia , Quimiocina CCL2/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Modelos Biológicos , Especificidade de Órgãos , Fenótipo , Transdução de Sinais
10.
EMBO Mol Med ; 12(6): e11217, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32400970

RESUMO

Mitochondrial metabolism and the generation of reactive oxygen species (ROS) contribute to the acquisition of DNA mutations and genomic instability in cancer. How genomic instability influences the metabolic capacity of cancer cells is nevertheless poorly understood. Here, we show that homologous recombination-defective (HRD) cancers rely on oxidative metabolism to supply NAD+ and ATP for poly(ADP-ribose) polymerase (PARP)-dependent DNA repair mechanisms. Studies in breast and ovarian cancer HRD models depict a metabolic shift that includes enhanced expression of the oxidative phosphorylation (OXPHOS) pathway and its key components and a decline in the glycolytic Warburg phenotype. Hence, HRD cells are more sensitive to metformin and NAD+ concentration changes. On the other hand, shifting from an OXPHOS to a highly glycolytic metabolism interferes with the sensitivity to PARP inhibitors (PARPi) in these HRD cells. This feature is associated with a weak response to PARP inhibition in patient-derived xenografts, emerging as a new mechanism to determine PARPi sensitivity. This study shows a mechanistic link between two major cancer hallmarks, which in turn suggests novel possibilities for specifically treating HRD cancers with OXPHOS inhibitors.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Carcinoma Epitelial do Ovário , Feminino , Recombinação Homóloga , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
11.
Proc Natl Acad Sci U S A ; 117(18): 9932-9941, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312819

RESUMO

Cellular starvation is typically a consequence of tissue injury that disrupts the local blood supply but can also occur where cell populations outgrow the local vasculature, as observed in solid tumors. Cells react to nutrient deprivation by adapting their metabolism, or, if starvation is prolonged, it can result in cell death. Cell starvation also triggers adaptive responses, like angiogenesis, that promote tissue reorganization and repair, but other adaptive responses and their mediators are still poorly characterized. To explore this issue, we analyzed secretomes from glucose-deprived cells, which revealed up-regulation of multiple cytokines and chemokines, including IL-6 and IL-8, in response to starvation stress. Starvation-induced cytokines were cell type-dependent, and they were also released from primary epithelial cells. Most cytokines were up-regulated in a manner dependent on NF-κB and the transcription factor of the integrated stress response ATF4, which bound directly to the IL-8 promoter. Furthermore, glutamine deprivation, as well as the antimetabolic drugs 2-deoxyglucose and metformin, also promoted the release of IL-6 and IL-8. Finally, some of the factors released from starved cells induced chemotaxis of B cells, macrophages, and neutrophils, suggesting that nutrient deprivation in the tumor environment can serve as an initiator of tumor inflammation.


Assuntos
Inflamação/genética , Interleucina-6/genética , Interleucina-8/genética , Neoplasias/metabolismo , Estresse Fisiológico/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Antimetabólitos/farmacologia , Morte Celular/efeitos dos fármacos , Desoxiglucose/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glucose/metabolismo , Glutamina/metabolismo , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Metformina/farmacologia , NF-kappa B/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Inanição/genética , Inanição/metabolismo , Estresse Fisiológico/imunologia
12.
Semin Cell Dev Biol ; 98: 54-62, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31238096

RESUMO

Lung cancer is the main cause of cancer death worldwide. Non-Small Cell Lung Carcinoma (NSCLC) is the most common subtype of lung cancer, and the prognosis of NSCLC patients in advanced stages is still very poor. Given the need for new therapies, the metabolism of NSCLC has been widely studied in the past two decades to identify vulnerabilities that could be translated into novel anti-metabolic therapeutic approaches. A number of studies have highlighted the role of glucose and mitochondrial metabolism in the development of NSCLC. The metabolic properties of lung tumors have been characterized in detail in vivo, and they include high glucose and lactate use and high heterogeneity regarding the use of nutrients and mitochondrial pathways. This heterogeneity has also been observed in patients infused with labeled nutrients. We will summarize here the knowledge about the use of amino acids, fatty acids and carbohydrates in NSCLC that could lead to new combination treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
14.
Methods Mol Biol ; 1862: 163-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30315467

RESUMO

Nutrient starvation or inhibition of cellular metabolism can induce cancer cell death. This can be measured by a variety of methods. We describe here four simple methods to measure cell death in culture by using microscopy, western blot, and flow cytometry. We also provide tools to differentiate between different forms of cell death like apoptosis and necrosis by using chemical inhibitors.


Assuntos
Caspases/análise , Metabolômica/métodos , Animais , Apoptose/efeitos dos fármacos , Western Blotting/instrumentação , Western Blotting/métodos , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Metabolômica/instrumentação , Microscopia/instrumentação , Microscopia/métodos , Transdução de Sinais/efeitos dos fármacos , Software
16.
Trends Biochem Sci ; 42(10): 763-764, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28869131

RESUMO

Entosis is an atypical form of cell death that occurs when a cell engulfs and kills another cell. A recent article by Overholtzer and colleagues indicates that glucose deprivation promotes entosis. AMP-activated protein kinase (AMPK) activation in the loser cells triggers their engulfment and elimination by winner cells, which endure starvation.


Assuntos
Proteínas Quinases Ativadas por AMP , Fome , Morte Celular , Glucose , Humanos
17.
Mol Cell Biol ; 37(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242652

RESUMO

Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Glucose/deficiência , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HeLa , Humanos , Neoplasias/metabolismo , Fator de Transcrição CHOP/metabolismo
18.
Oncotarget ; 7(24): 36461-36473, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27183907

RESUMO

Unregulated growth and replication as well as an abnormal microenvironment, leads to elevated levels of stress which is a common trait of cancer. By inducing both energy and endoplasmic reticulum (ER) stress, 2-Deoxy-glucose (2-DG) is particularly well-suited to take advantage of the therapeutic window that heightened stress in tumors provides. Under hypoxia, blocking glycolysis with 2-DG leads to significant lowering of ATP resulting in energy stress and cell death in numerous carcinoma cell types. In contrast, under normoxia, 2-DG at a low-concentration is not toxic in most carcinomas tested, but induces growth inhibition, which is primarily due to ER stress. Here we find a synergistic toxic effect in several tumor cell lines in vitro combining 2-DG with fenofibrate (FF), a drug that has been safely used for over 40 years to lower cholesterol in patients. This combination induces much greater energy stress than either agent alone, as measured by ATP reduction, increased p-AMPK and downregulation of mTOR. Inhibition of mTOR results in blockage of GRP78 a critical component of the unfolded protein response which we speculate leads to greater ER stress as observed by increased p-eIF2α. Moreover, to avoid an insulin response and adsorption by the liver, 2-DG is delivered by slow-release pump yielding significant anti-tumor control when combined with FF. Our results provide promise for developing this combination clinically and others that combine 2-DG with agents that act synergistically to selectively increase energy and ER stress to a level that is toxic to numerous tumor cell types.


Assuntos
Apoptose/efeitos dos fármacos , Desoxiglucose/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fenofibrato/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Hipolipemiantes/farmacologia , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
FEBS J ; 283(14): 2640-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26587781

RESUMO

The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases.


Assuntos
Morte Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose/fisiologia , Caspase 8/metabolismo , Endorribonucleases/metabolismo , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Necrose , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
20.
FEBS J ; 282(18): 3647-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26172539

RESUMO

Altered metabolism is a hallmark of cancer that opens new therapeutic possibilities. 2-deoxyglucose (2-DG) is a non-metabolizable glucose analog tested in clinical trials and is frequently used in experimental settings to mimic glucose starvation. However, in the present study, conducted in a rhabdomyosarcoma cell line, we find that 2-DG induces classical nuclear apoptotic morphology and caspase-dependent cell death, whereas glucose deprivation drives cells toward necrotic cell death. Necrosis induced by glucose deprivation did not resemble necroptosis or ferroptosis and was not prevented by antioxidants. Both stimuli promote endoplasmic reticulum stress. Moreover, the transcription factor ATF4 is found to mediate both the apoptosis induced by 2-DG and the glycosylation inhibitor tunicamycin, as well as the necrosis provoked by glucose withdrawal. Several hexoses partially prevented glucose deprivation-induced necrosis in rhabdomyosarcoma, although only mannose prevented apoptosis induced by 2-DG. In both cases, a reduction of cell death was associated with decreased levels of ATF4. Our results confirm previous data indicating the differential effects of these two forms with respect to inhibiting glucose metabolism, and they place endoplasmic reticulum stress as the critical mediator of glucose starvation-induced cell death.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Desoxiglucose/farmacologia , Glucose/deficiência , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Desoxiglucose/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Monossacarídeos/metabolismo , Monossacarídeos/farmacologia , Necrose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA