Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38687777

RESUMO

Allergic inflammation, which is the pathogenesis of allergic rhinitis and asthma, is associated with disruption of the airway epithelial barrier due to the effects of type 2 inflammatory cytokines, i.e. interleukin-4 and interleukin-13 (IL-4/13). The anti-allergic inflammatory effect of ß-eudesmol (BE) on the tight junction (TJ) of the airway epithelium has not previously been reported. Herein, the barrier protective effect of BE was determined by measurement of transepithelial electrical resistance and by paracellular permeability assay in an IL-4/13-treated 16HBE14o- monolayer. Pre-treatment of BE concentration- and time- dependently inhibited IL-4/13-induced TJ barrier disruption, with the most significant effect observed at 20 µM. Cytotoxicity analyses showed that BE, either alone or in combination with IL-4/13, had no effect on cell viability. Western blot and immunofluorescence analyses showed that BE inhibited IL-4/13-induced mislocalization of TJ components, including occludin and zonula occludens-1 (ZO-1), without affecting the expression of these two proteins. In addition, the mechanism of the TJ-protective effect of BE was mediated by inhibition of IL-4/13-induced STAT6 phosphorylation, in which BE might serve as an antagonist of cytokine receptors. In silico molecular docking analysis demonstrated that BE potentially interacted with the site I pocket of the type 2 IL-4 receptor, likely at Asn-126 and Tyr-127 amino acid residues. It can therefore be concluded that BE is able to prevent IL-4/13-induced TJ disassembly by interfering with cytokine-receptor interaction, leading to suppression of STAT6-induced mislocalization of occludin and ZO-1. BE is a promising candidate for a therapeutic intervention for inflammatory airway epithelial disorders driven by IL-4/13.


Assuntos
Células Epiteliais , Interleucina-13 , Interleucina-4 , Fator de Transcrição STAT6 , Junções Íntimas , Proteína da Zônula de Oclusão-1 , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-13/metabolismo , Fator de Transcrição STAT6/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
Environ Toxicol Pharmacol ; 107: 104416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492761

RESUMO

PM2.5-induced airway injury contributes to an increased rate of respiratory morbidity. However, the relationship between PM2.5 toxicants and acute cytotoxic effects remains poorly understood. This study aimed to investigate the mechanisms of PM2.5- and its constituent-induced cytotoxicity in human airway epithelial cells. Exposure to PM2.5 resulted in dose-dependent cytotoxicity within 24 h. Among the PM2.5 constituents examined, Cr(VI) at the dose found in PM2.5 exhibited cytotoxic effects. Both PM2.5 and Cr(VI) cause necrosis while also upregulating the expression of proinflammatory cytokine transcripts. Interestingly, exposure to the conditioned PM, obtained from adsorption in the Cr(VI)-reducing agents, FeSO4 and EDTA, showed a decrease in cytotoxicity. Furthermore, PM2.5 mechanistically enhances programmed pyroptosis through the activation of NLRP3/caspase-1/Gasdermin D pathway and increase of IL-1ß. These pyroptosis markers were reduced when exposure to conditioned PM. These findings provide a deeper understanding of mechanisms underlying PM2.5 and Cr(VI) in acute airway toxicity.


Assuntos
Cromo , Inflamassomos , Material Particulado , Humanos , Inflamassomos/metabolismo , Material Particulado/toxicidade , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Epiteliais
3.
Biomed Pharmacother ; 168: 115774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924784

RESUMO

BACKGROUND: Airway remodeling is associated with severity and treatment insensitivity in asthma. This study aimed to investigate the effects of G protein-coupled receptor 120 (GPR120) stimulation on alleviating allergic inflammation and remodeling of airway epithelium. RESEARCH DESIGN AND METHODS: Ovalbumin (OVA)-challenged BALB/c mice and type-2-cytokine (IL-4 and IL-13)-exposed 16HBE human bronchial epithelial cells were treated with GSK137647A, a selective GPR120 agonist. Markers of allergic inflammation and airway remodeling were determined. RESULTS: GSK137647A attenuated inflammation and mucus secretion in airway epithelium of OVA-challenged mice. Stimulation of GPR120 in 16HBE suppressed expression of asthma-associated cytokines and cytokine-induced expression of pathogenic mucin-MUC5AC. These effects were abolished by co-treatment with AH7614, a GPR120 antagonist. Moreover, GPR120 stimulation in 16HBE cells reduced expression of fibrotic markers including fibronectin protein and ACTA2 mRNA and inhibited epithelial barrier leakage induced by type-2 inflammation via rescuing expression of zonula occludens-1 protein. Furthermore, GPR120 stimulation prevented the cytokine-induced airway epithelial remodeling via suppression of STAT6 and Akt phosphorylation. CONCLUSIONS: Our findings suggest that GPR120 activation alleviates allergic inflammation and remodeling of airway epithelium partly through inhibition of STAT6 and Akt. GPR120 may represent a novel therapeutic target for diseases associated with remodeling of airway epithelium, including asthma.


Assuntos
Asma , Interleucina-13 , Humanos , Animais , Camundongos , Interleucina-13/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Remodelação das Vias Aéreas , Transdução de Sinais , Modelos Animais de Doenças , Asma/metabolismo , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Inflamação/metabolismo , Ovalbumina/farmacologia , Camundongos Endogâmicos BALB C , Pulmão/patologia , Fator de Transcrição STAT6/metabolismo
4.
Biomed Pharmacother ; 165: 115158, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473685

RESUMO

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which currently lacks effective treatments. AMP-activated protein kinase (AMPK) stimulation by chalcones, a class of polyphenols abundantly found in plants, is proposed as a promising therapeutic approach for DM. This study aimed to identify novel chalcone derivatives with improved AMPK-stimulating activity in human podocytes and evaluate their mechanisms of action as well as in vivo efficacy in a mouse model of DN. Among 133 chalcone derivatives tested, the sulfonamide chalcone derivative IP-004 was identified as the most potent AMPK activator in human podocytes. Western blot analyses, intracellular calcium measurements and molecular docking simulation indicated that IP-004 activated AMPK by mechanisms involving direct binding at allosteric site of calcium-dependent protein kinase kinase ß (CaMKKß) without affecting intracellular calcium levels. Interestingly, eight weeks of intraperitoneal administration of IP-004 (20 mg/kg/day) significantly decreased fasting blood glucose level, activated AMPK in the livers, muscles and glomeruli, and ameliorated albuminuria in db/db type II diabetic mice. Collectively, this study identifies a novel chalcone derivative capable of activating AMPK in vitro and in vivo and exhibiting efficacy against hyperglycemia and DN in mice. Further development of AMPK activators based on chalcone derivatives may provide an effective treatment of DN.


Assuntos
Chalcona , Chalconas , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hiperglicemia , Camundongos , Humanos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Cálcio , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico
5.
J Neurochem ; 166(2): 201-214, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070532

RESUMO

A neurodegenerative disorder is a condition that causes a degeneration of neurons in the central nervous system, leading to cognitive impairment and movement disorders. An accumulation of oxidative stress in neurons contributes to the pathogenesis of neurodegenerative disorders. Over the past few years, several studies have suggested that short-chain fatty acids, metabolites of the gut microbiota, might have a beneficial effect in neurodegenerative disorders. A G protein-coupled receptor 43 (GPR43) plays an important role in modulating oxidative stress and inflammatory processes in several tissues. Interestingly, the downstream signaling pathways activated by GPR43 to modulate oxidative stress differ among tissues. Moreover, the cellular mechanisms underlying GPR43 activation in neuronal cells to handle oxidative stress remain unclear. In this present study, we tested the role of GPR43, which is activated by short-chain fatty acids or a specific GPR43 agonist, in an oxidative stress-induced neuronal cell line (SH-SY5Y) injury. Our findings suggest that a combination of short-chain fatty acids with a physiological function could protect neurons from H2 O2 -induced cell damage. The effect of short-chain fatty acids mixture was abolished by pretreatment with a GPR43 antagonist, indicating this protective effect is a GPR43-dependent mechanism. In addition, a specific GPR43 agonist shows a similar result to that found in short-chain fatty acids mixture. Furthermore, our findings indicate that the downstream activation of GPR43 to protect against oxidative stress-induced neuronal injury is a biased Gq activation signaling of GPR43, which results in the prevention of H2 O2 -induced neuronal apoptosis. In conclusion, our results show new insight into the cellular mechanism of GPR43 and its neuroprotective effect. Taken together, this newly discovered finding suggests that activation of the biased Gq signaling pathway of GPR43 might be a potential therapeutic target for aging-related neurodegeneration.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Ácidos Graxos Voláteis/farmacologia , Transdução de Sinais , Estresse Oxidativo , Receptores Acoplados a Proteínas G/metabolismo
6.
BMC Vet Res ; 19(1): 4, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624444

RESUMO

Post-weaning diarrhea in piglets is a major problem, resulting in a significant loss in pig production. This study aimed to investigate the effects of piperine, an alkaloid abundantly found in black peppers, on biological activities related to the pathogenesis of post-weaning diarrhea using a porcine duodenal enteroid model, a newly established intestinal stem cell-derived in vitro model recapitulating physiology of porcine small intestinal epithelia. Porcine duodenal enteroid models were treated with disease-relevant pathological inducers with or without piperine (8 µg/mL and/or 20 µg/mL) before measurements of oxidative stress, mRNA, and protein expression of proinflammatory cytokines, nuclear factor-kappa B (NF-κB) nuclear translocation, barrier leakage, and fluid secretion. We found that piperine (20 µg/mL) inhibited H2O2-induced oxidative stress, TNF-α-induced mRNA, and protein expression of proinflammatory cytokines without affecting NF-κB nuclear translocation, and prevented TNF-α-induced barrier leakage in porcine duodenal enteroid monolayers. Importantly, piperine inhibited fluid secretion induced by both forskolin and heat-stable toxins (STa) in a three-dimensional model of porcine duodenal enteroids. Collectively, piperine possesses both anti-inflammatory and anti-secretory effects in porcine enteroid models. Further research and development of piperine may provide novel interventions for the treatment of post-weaning porcine diarrhea.


Assuntos
Alcaloides , NF-kappa B , Suínos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Desmame , Peróxido de Hidrogênio , Diarreia/tratamento farmacológico , Diarreia/veterinária , Alcaloides/farmacologia , Citocinas , RNA Mensageiro
7.
PLoS Negl Trop Dis ; 16(12): e0010989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36490300

RESUMO

As a leading cause of death in children under 5 years old, secretory diarrheas including cholera are characterized by excessive intestinal fluid secretion driven by enterotoxin-induced cAMP-dependent intestinal chloride transport. This study aimed to identify fungal bioactive metabolites possessing anti-secretory effects against cAMP-dependent chloride secretion in intestinal epithelial cells. Using electrophysiological analyses in human intestinal epithelial (T84) cells, five fungus-derived statin derivatives including α,ß-dehydrolovastatin (DHLV), α,ß-dehydrodihydromonacolin K, lovastatin, mevastatin and simvastatin were found to inhibit the cAMP-dependent chloride secretion with IC50 values of 1.8, 8.9, 11.9, 11.4 and 5 µM, respectively. Being the most potent statin derivatives, DHLV was evaluated for its pharmacological properties including cellular toxicity, mechanism of action, target specificity and in vivo efficacy. DHLV at concentrations up to 20 µM did not affect cell viability and barrier integrity of T84 cells. Electrophysiological analyses indicated that DHLV inhibited cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent apical chloride channel, via mechanisms not involving alteration of intracellular cAMP levels or its negative regulators including AMP-activated protein kinases and protein phosphatases. DHLV had no effect on Na+-K+ ATPase activities but inhibited Ca2+-dependent chloride secretion without affecting intracellular Ca2+ levels. Importantly, intraperitoneal (2 mg/kg) and intraluminal (20 µM) injections of DHLV reduced cholera toxin-induced intestinal fluid secretion in mice by 59% and 65%, respectively without affecting baseline intestinal fluid transport. This study identifies natural statin derivatives as novel natural product-derived CFTR inhibitors, which may be beneficial in the treatment of enterotoxin-induced secretory diarrheas including cholera.


Assuntos
Cólera , Inibidores de Hidroximetilglutaril-CoA Redutases , Criança , Camundongos , Humanos , Animais , Pré-Escolar , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cólera/tratamento farmacológico , Cólera/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Mucosa Intestinal , Cloretos/metabolismo , Cálcio/metabolismo , Diarreia/tratamento farmacológico , Enterotoxinas/metabolismo
8.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297833

RESUMO

Diarrhea is an important adverse effect of epidermal growth factor receptor-tyrosine kinase inhibitors, especially afatinib. Novel antidiarrheal agents are needed to reduce epidermal growth factor receptor-tyrosine kinase inhibitor-associated diarrhea to improve the quality of life and treatment outcome in cancer patients. This study aimed to investigate the anti-diarrheal activity of chitosan oligosaccharide against afatinib-induced barrier disruption and chloride secretion in human intestinal epithelial cells (T84 cells). Chitosan oligosaccharide (100 µg/mL) prevented afatinib-induced barrier disruption determined by changes in transepithelial electrical resistance and FITC-dextran flux in the T84 cell monolayers. In addition, chitosan oligosaccharide prevented afatinib-induced potentiation of cAMP-induced chloride secretion measured by short-circuit current analyses in the T84 cell monolayers. Chitosan oligosaccharide induced the activation of AMPK, a positive regulator of epithelial tight junction and a negative regulator of cAMP-induced chloride secretion. Moreover, chitosan oligosaccharide partially reversed afatinib-induced AKT inhibition without affecting afatinib-induced ERK inhibition via AMPK-independent mechanisms. Collectively, this study reveals that chitosan oligosaccharide prevents the afatinib-induced diarrheal activities in T84 cells via both AMPK-dependent and AMPK-independent mechanisms. Chitosan oligosaccharide represents a promising natural polymer-derived compound for further development of treatment for afatinib-associated diarrheas.

9.
Chem Asian J ; 17(16): e202200329, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35727893

RESUMO

The convergent total syntheses of three 14-membered macrolide natural products, mutolide, nigrosporolide and (4S,7S,13S)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide have been achieved. The key synthetic features include Shiina macrolactonization to assemble the 14-membered macrocyclic core, Wittig or Still-Gennari olefination and selective reduction of propargylic alcohol to construct the E- or Z-olefins. Cross metathesis was also highlighted as an efficient tool to forge the formation of E-olefin. The three synthetic macrolides were evaluated for their cytotoxic activity against three human cancer cell lines as well as for inhibitory effect on CFTR-mediated chloride secretion in human intestinal epithelial (T84) cells. Mutolide displayed significant cytotoxic activity against HCT116 colon cancer cells with an IC50 of ∼12 µM as well as a potent CTFR inhibitory effect with an IC50 value of ∼1 µM.


Assuntos
Antineoplásicos , Produtos Biológicos , Alcenos , Antibacterianos , Antineoplásicos/farmacologia , Humanos , Macrolídeos/farmacologia , Estereoisomerismo
10.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408483

RESUMO

Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed.


Assuntos
Antineoplásicos , Asteraceae , Produtos Biológicos , Neoplasias , Sesquiterpenos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Asteraceae/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Lactonas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
11.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408508

RESUMO

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.


Assuntos
Nefropatias Diabéticas , Podócitos , Apoptose , Nefropatias Diabéticas/metabolismo , Fungos/metabolismo , Humanos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Terfenil
12.
Nat Prod Res ; 36(21): 5462-5469, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34894887

RESUMO

Two new compounds, one α-pyrone (trichoharzianone) and one decalin (trichoharzianin), along with eight known compounds including three decalins, two δ-lactones, two carboxylic acids and one isochroman were isolated from the marine-derived fungus Trichoderma harzianum PSU-MF79. The structures were determined by spectroscopic methods. The relative configuration of trichoharzianin was assigned based on NOEDIFF data and coupling constants whereas the absolute configurations were established by comparison of electronic circular dichroism data with those of the co-metabolites. Known (-)-massoia lactone exhibited mild antifungal activity against Cryptococcus neoformans ATCC90113 flucytosine-resistant, Candida albicans ATCC90028 and C. albicans NCPF3153 with MIC values of 128, 200 and 200 µg/mL, respectively, and weak cytotoxic activity against HCT-116 and MCF-7 cell lines with the respective IC50 values of 17 and 32 µM. In addition, it was noncytotoxic against noncancerous Vero cells with an IC50 value of >100 µM.


Assuntos
Hypocreales , Trichoderma , Chlorocebus aethiops , Animais , Humanos , Pironas/farmacologia , Células Vero , Estrutura Molecular , Candida albicans , Lactonas , Trichoderma/química
13.
Biomed Pharmacother ; 142: 112030, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426253

RESUMO

Oriental herbal medicine with the two bioactive constituents, ß-eudesmol (BE) and atractylodin (AT), has been used as a remedy for gastrointestinal disorders. There was no scientific evidence reporting their antidiarrheal effect and underpinning mechanisms. Therefore, we aimed to investigate the anti-secretory activity of these two compounds in vitro. The inhibitory effect of BE and AT on cAMP-induced Cl- secretion was evaluated by Ussing chamber in human intestinal epithelial (T84) cells. Short-circuit current (ISC) and apical Cl- current (ICl-) were measured after adding indirect and direct cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activator. MTT assay was used to determine cellular cytotoxicity. Protein-ligand interaction was investigated by in silico molecular docking analysis. BE, but not AT concentration-dependently (IC50 of ~1.05 µM) reduced cAMP-mediated, CFTRinh-172 inhibitable Cl- secretion as determined by transepithelial ISC across a monolayer of T84 cells. Potency of CFTR-mediated ICl- inhibition by BE did not change with the use of different CFTR activators suggesting a direct blockage of the channel active site(s). Pretreatment with BE completely prevented cAMP-induced ICl-. Furthermore, BE at concentrations up to 200 µM (24 h) had no effect on T84 cell viability. In silico studies indicated that BE could best dock onto dephosphorylated structure of CFTR at ATP-binding pockets in nucleotide-binding domain (NBD) 2 region. These findings provide the first evidence for the anti-secretory effect of BE involving inhibition of CFTR function. BE represents a promising candidate for the therapeutic or prophylactic intervention of diarrhea resulted from intestinal hypersecretion of Cl.


Assuntos
Cloretos/metabolismo , Células Epiteliais/efeitos dos fármacos , Furanos/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Antidiarreicos/administração & dosagem , Antidiarreicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Canais de Cloreto/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Furanos/administração & dosagem , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Sesquiterpenos de Eudesmano/administração & dosagem
14.
Pharmaceutics ; 13(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203816

RESUMO

The small intestine provides the major site for the absorption of numerous orally administered drugs. However, before reaching to the systemic circulation to exert beneficial pharmacological activities, the oral drug delivery is hindered by poor absorption/metabolic instability of the drugs in gastrointestinal (GI) tract and the presence of the mucus layer overlying intestinal epithelium. Therefore, a polymeric drug delivery system has emerged as a robust approach to enhance oral drug bioavailability and intestinal drug absorption. Chitosan, a cationic polymer derived from chitin, and its derivatives have received remarkable attention to serve as a promising drug carrier, chiefly owing to their versatile, biocompatible, biodegradable, and non-toxic properties. Several types of chitosan-based drug delivery systems have been developed, including chemical modification, conjugates, capsules, and hybrids. They have been shown to be effective in improving intestinal assimilation of several types of drugs, e.g., antidiabetic, anticancer, antimicrobial, and anti-inflammatory drugs. In this review, the physiological challenges affecting intestinal drug absorption and the effects of chitosan on those parameters impacting on oral bioavailability are summarized. More appreciably, types of chitosan-based nanomaterials enhancing intestinal drug absorption and their mechanisms, as well as potential applications in diabetes, cancers, infections, and inflammation, are highlighted. The future perspective of chitosan applications is also discussed.

15.
Clin Exp Nephrol ; 25(9): 944-952, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057612

RESUMO

BACKGROUND: Renal bilateral fluid filled-cyst in polycystic kidney disease (PKD) is associated with abnormal epithelial cell proliferation and transepithelial fluid secretion which leads to end-stage renal disease (ESRD). A chalcone derivative, isoliquiritigenin (ISLQ), has been shown to have various pharmacological properties. Since several studies have shown that ISLQ could inhibit CFTR channel activity, it is interesting to see whether it can inhibit renal cyst enlargement. The present study was aimed to determine an inhibitory effect and the mechanism of chalcone derivatives on MDCK cyst progression and Pkd1 mutant cells. METHODS: MDCK cyst growth and cyst formation experiments, MTT assay, Ussing chamber experiment, BrdU cell proliferation assay and western blot analysis were performed in this study. RESULTS: Among four compounds of chalcone derivatives tested, CHAL-005 (100 µM) was found to inhibit MDCK cyst growth in a dose-dependent manner without cytotoxicity. It inhibited short-circuit current of chloride secretion as well as CFTR protein expression in MDCK cells. CHAL-005 significantly suppressed cell proliferation. In addition, CHAL-005 strongly reduced phosphorylation ERK1/2 and phosphorylation S6 kinase in MDCK and Pkd1 mutant cells. Interestingly, CHAL-005 activated phosphorylation of AMP kinase protein expression in MDCK and Pkd1 mutant cells. CONCLUSION: CHAL-005 slowed MDCK cyst progression by inhibiting CFTR expression and reducing ERK1/2 and mTOR/S6K signaling pathways as well as activating AMPK expression. Therefore, a chalcone derivative could represent as a promising drug candidate for polycystic kidney disease intervention.


Assuntos
Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Líquido Cístico/efeitos dos fármacos , Líquido Cístico/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cães , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação/efeitos dos fármacos , Doenças Renais Policísticas/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas/metabolismo , Canais de Cátion TRPP/genética
16.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920678

RESUMO

Isolated α,ß-dehydromonacolin S (C5) from soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178 was recently shown to exhibit an inhibitory effect against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity in vitro. In this study, we investigated the effects of C5 on lipid-lowering, hepatic steatosis, and hepatic gluconeogenesis in vivo. The control rats received a daily dose of either vehicle or C5 at 10 mg/kg, while the high-fat diet-induced obese (HFD) rats were administered vehicle; 1, 3, or 10 mg/kg C5; or 10 mg/kg lovastatin (LO) for 6 weeks. C5 significantly improved dyslipidemia and diminished liver enzymes, HMGR activity, insulin resistance, and hepatic steatosis, comparable to LO without any hepatotoxicity and nephrotoxicity in HFD rats. A higher efficacy of C5 in lipid-lowering activity and anti-hepatic steatosis was associated with a significant decrease in genes involved in lipid metabolism including sterol regulatory element binding protein (SREBP) 1c, SREBP2, liver X receptor alpha (LXRα), and peroxisome proliferator-activated receptor (PPAR) gamma (PPARγ) together with an increase in the PPAR alpha (PPARα). Correspondingly, C5 was able to down-regulate the lipid transporters cluster of differentiation 36 (CD36) and Niemann-Pick C1 Like 1 (NPC1L1), increase the antioxidant superoxide dismutase gene expression, and decrease the proinflammatory cytokines, tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1ß). Impairment of hepatic gluconeogenesis and insulin resistance in HFD rats was restored by C5 through down-regulation of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), and the activation of AMP-dependent kinase serine (AMPK) and serine/threonine protein kinase B (Akt). Collectively, this novel C5 may be a therapeutic option for treating dyslipidemia, hepatic steatosis, and reducing potential risk for diabetes mellitus.

17.
Methods Mol Biol ; 2367: 273-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861461

RESUMO

Intestinal barrier function relies primarily on the assembly and integrity of tight junctions, which forms a size-selective barrier. This barrier restricts paracellular movement of solutes in various types of epithelia. Of note, extracellular Ca2+ concentration affects tight junction assembly. Therefore, the removal and re-addition of Ca2+ into cell culture medium of cultured intestinal epithelial cells causes destabilization and reassembly of tight junction to membrane periphery near apical surface, respectively. Based on this principle, the Ca2+-switch assay was established to investigate tight junction assembly in fully differentiated intestinal epithelial cells. This chapter provides a stepwise protocol for culture of intestinal epithelial cell monolayers using T84 cell line as an in vitro model and the Ca2+-switch assay for evaluating tight junction assembly.


Assuntos
Junções Íntimas , Cálcio , Células Epiteliais , Mucosa Intestinal , Intestinos
18.
Biomed Pharmacother ; 139: 111583, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33901875

RESUMO

TMEM16A is a Ca2+-activated Cl- channel involved in mucus secretion in inflamed airways and proposed as a drug target for diseases associated with mucus hypersecretion including asthma. This study aimed to identify novel inhibitors of TMEM16A-mediated Cl- secretion in airway epithelial cells from a collection of compounds isolated from fungi indigenous in Thailand and examine its potential utility in mitigating airway mucus secretion using Calu-3 cells as a study model. Screening of > 400 fungal metabolites revealed purpactin A isolated from a soil-derived fungus Penicillium aculeatum PSU-RSPG105 as an inhibitor of TMEM16A-mediated Cl- transport with an IC50 value of ~2 µM. A consistent inhibitory effect of purpactin A on TMEM16A were observed regardless of TMEM16A activators or in the presence of an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a negative regulator of TMEM16A. In addition, purpactin A did not affect cell viability, epithelial barrier integrity and activities of membrane transport proteins essential for maintaining airway hydration including CFTR Cl- channels and apical BK K+ channels. Intriguingly, purpactin A prevented a Ca2+-induced mucin release in cytokine-treated airway cells. Taken together, purpactin A represents the first class of TMEM16A inhibitor derived from fungus, which may be beneficial for the treatment of diseases associated with mucus hypersecretion.


Assuntos
Anoctamina-1/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Mucinas/metabolismo , Animais , Anoctamina-1/metabolismo , Anoctamina-1/fisiologia , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Ratos Endogâmicos F344 , Sistema Respiratório/citologia , Talaromyces
19.
SLAS Discov ; 26(3): 439-449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32830616

RESUMO

Inhibition of the KCa3.1 potassium channel has therapeutic potential in a variety of human diseases, including inflammation-associated disorders and cancers. However, KCa3.1 inhibitors with high therapeutic promise are currently not available. This study aimed to establish a screening assay for identifying inhibitors of KCa3.1 in native cells and from library compounds derived from natural products in Thailand. The screening platform was successfully developed based on a thallium flux assay in intestinal epithelial (T84) cells with a Z' factor of 0.52. The screening of 1352 compounds and functional validation using electrophysiological analyses identified 8 compounds as novel KCa3.1 inhibitors with IC50 values ranging from 0.14 to 6.57 µM. These results indicate that the assay developed is of excellent quality for high-throughput screening and capable of identifying KCa3.1 inhibitors. This assay may be useful in identifying novel KCa3.1 inhibitors that may have therapeutic potential for inflammation-associated disorders and cancers.


Assuntos
Produtos Biológicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Tálio/metabolismo , Apamina/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HCT116 , Células HT29 , Humanos , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons , Ouabaína/farmacologia , Oximas/farmacologia , Potássio/metabolismo , Pirazóis/farmacologia
20.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339290

RESUMO

Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.


Assuntos
Materiais Biocompatíveis/química , Quitina/análogos & derivados , Quitosana/análogos & derivados , Animais , Artrópodes/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Quitina/farmacologia , Quitina/uso terapêutico , Quitosana/farmacologia , Quitosana/uso terapêutico , Portadores de Fármacos/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA