Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 124(11): 1705-1719, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796145

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered a novel regenerative therapy that holds much potential. This study aimed to examine and compare the ameliorative effects of BM-MSCs compared to α-tocopherol (α-Toc) on apoptosis, autophagy, and ß-cell function in a rat model of streptozotocin (STZ)-induced diabetes and further analyzed the implications and interrelations of the entero-insular axis, and type I phosphoinositide 3-kinase (PI3K)/Akt signaling. Forty adult male albino rats were categorized into four groups (n = 10, in each): control group, STZ-induced diabetic group (single i.p. injection of STZ 45 mg/kg), diabetic and treated with BM-MSCs injection, diabetic and treatment with α-Toc p.o. The serum glucose, insulin, nitric oxide (NO), and catalase (CAT) were measured. Histopathological examination of the pancreas, the expression levels of insulin, CD44, caspase-3, autophagy markers, P13K/Akt, and pancreas/duodenum homeobox protein 1, in pancreatic tissue, and glucose-dependent insulinotropic polypeptide (GIP) in the duodenum were detected by hematoxylin and eosin staining, immunofluorescence labeling, and by quantitative real-time polymerase chain reaction. The diabetic rats showed reduced insulin, hyperglycemia, nitrosative stress (NO, CAT), augmented apoptosis (caspase 3), impaired autophagy (p62/SQSTM1, LC3), downregulated PI3K/Akt pathway and increased GIP expression, and degeneration of pancreatic islets. Treatment with either BM-MSCs or α-Toc suppressed the nitrosative stress, reduced apoptosis, recovered autophagy, upregulated PI3K/Akt pathway, and subsequently increased insulin levels, decreased blood glucose, and downregulated GIP expression with partial restoration of pancreatic islets. Based on our findings, the cytoprotective effects of BM-MSCs and α-Toc in type 1-induced diabetes appeared to be related to repaired autophagy and recovered PI3K/Akt signaling. Moreover, we reported their novel effects on reversing intestinal GIP expression level. The effect of BM-MSCs was notably superior to that of α-Toc.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estreptozocina/farmacologia , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Apoptose , Insulina/metabolismo , Autofagia , Glucose/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Ultrastruct Pathol ; 46(1): 110-121, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35135431

RESUMO

Ischemia-reperfusion injury is related to kidney dysfunction due to bilateral lower limb ischemia. This kidney injury may lead to acute kidney failure and mortality. Alpha-Lipoic Acid, a known antioxidant, can ameliorate kidney dysfunction and histopathology related to several etiologies. Ischemia was performed in adult male rats by bilateral femoral artery occlusion, then ischemia-reperfusion was done for 1 day and 7 days. Lipoic acid was administered to rats that had undergone ischemia-reperfusion for 7 days. The renal cortices of the kidneys of the tested groups were processed for light and electron microscopic examination. Immunohistochemical evaluation was performed using the following markers: cleaved caspase 3, inducible nitric oxide synthase, and tumor necrosis factor-alpha. There was damage to the renal cortical tubules and degeneration of podocytes and thickening of the glomerular basement membrane. Additionally, there was an increase in apoptosis and the inflammatory markers' immunoreactivity. Administration of alpha-lipoic acid resulted in improvement of the structural and immunohistochemical changes of the renal cortex. This may suggest a therapeutic rule of it and promising application for variable kidney injuries.


Assuntos
Traumatismo por Reperfusão , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Isquemia/patologia , Rim/patologia , Masculino , Ratos , Traumatismo por Reperfusão/patologia , Ácido Tióctico/farmacologia
3.
Ultrastruct Pathol ; 46(1): 37-53, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001795

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with subsequent motor manifestations. This study aimed to assess the ameliorative effects of nicotine, in rotenone-induced PD rat model. Thirty adult male Albino Wistar rats were divided into three equal groups. Group I received an injection of normal saline. Group II received subcutaneous injection of rotenone at a dose of 1.5 mg/kg every other day. Group III received rotenone in the same previous dose and nicotine at a dose of 1.5 mg/kg daily. After 11 days of treatment, body weight (BW) and rat motor behavior were estimated. Specimens from the midbrain were processed for light and electron microscopy. The expression of tyrosine hydroxylase (TH), α-synuclein, and GFAP was examined. Serum levels of total antioxidant capacity (TAC) and malondialdehyde (MDA), and striatal levels of dopamine (DA) were analyzed. Group III revealed a significant improvement in BW and motor activity. Nicotine upregulated the expression of TH, downregulated the expression of α-synuclein and GFAP. The levels of MDA and TAC were improved but were still far from those of the control. Striatal DA levels increased. Nicotine activated the neurons and glial cells. The vascular endothelium, however, did not elicit improvement. Although nicotine ameliorated the loss of the dopaminergic neurons and motor deficit, it did not show improvement of vascular endothelium. It is still necessary to examine nicotin's ability to maintain the dopaminergic neurons in a good functioning state.


Assuntos
Doença de Parkinson , Parte Compacta da Substância Negra , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Nicotina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra
4.
Anat Cell Biol ; 54(1): 112-123, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33782217

RESUMO

Nicotine neuronal interactions exert an adverse potential in some brain regions and a significant link has been established between tobacco smoke/nicotine and vascular impairment. This work addresses nicotine impact on various components of the substantia nigra compacta (SNc) in rat. Twenty adult male Albino rats were divided equally into two groups: Group I, vehicle-control group (received saline [1 ml/kg body weight intra peritoneally] for 11 days). Group II; nicotine group (received 1.5 mg/kg body weight/day Sc) for 11 days. Nicotine levels were detected in the serum. Specimens were taken from the mid brain, processed and examined using biochemical, immunohistochemical, ultrastructural and morphometric techniques. In nicotine group, biochemical analysis revealed reduction in total antioxidant capacity (TAC), decrease in dopamine and malondialdehyde (MDA) levels. The mean number of light cells, and the mean surface area of nerve cells/field were significantly reduced, with an increase of dark cells were found in nicotine group compared to control. Immunoreactivity in nicotine group revealed an increase in neuronal α-synuclein, reduction in tyrosine hydroxylase enzyme, an increase in caspase 3 and ultrastructure changes suggestive of neuronal apopto. The blood capillaries were markedly affected. Nicotine induced endothelial and pericytic apoptotic changes, irregular lumena and indistinct endothelial junctional complex. Nicotine administered subcutaneously in a small dose may have a deleterious effect on SNc, mainly involving dopaminergic neurons and blood capillaries. This effect seems to be secondary to an oxidative stress that might be produced by reduced TAC and increased MDA levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA