Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 71, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373982

RESUMO

Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Moringa oleifera , Moringa oleifera/metabolismo , Polifenóis/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
2.
Environ Res ; 242: 117600, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939806

RESUMO

Dichlorvos (2,2-Dichlorovinyl dimethyl phosphate, [DDVP]) belongs to the class of organophosphates and is widely used as an insecticide in agriculture farming and post-harvest storage units. Extensive research has been conducted to assess the factors responsible for the presence of DDVP in terrestrial and aquatic ecosystems, as well as the entire food chain. Numerous studies have demonstrated the presence of DDVP metabolites in the food chain and their toxicity to mammals. These studies emphasize that both immediate and chronic exposure to DDVP can disrupt the host's homeostasis, leading to multi-organ damage. Furthermore, as a potent carcinogen, DDVP can harm aquatic systems. Therefore, understanding the contamination of DDVP and its toxicological effects on both plants and mammals is vital for minimizing potential risks and enhancing safety in the future. This review aimed to comprehensively consolidate information about the distribution, ecological effects, and health impacts of DDVP, as well as its metabolism, detection, prevention, and remediation strategies. In summary, this study observes the distribution of DDVP contaminations in vegetables and fruits, resulting in significant toxicity to humans. Although several detection and bioremediation strategies are emerging, the improper application of DDVP and the alarming level of DDVP contamination in foods lead to human toxicity that requires attention.


Assuntos
Diclorvós , Inseticidas , Compostos Organofosforados , Animais , Humanos , Diclorvós/toxicidade , Diclorvós/metabolismo , Ecossistema , Inseticidas/toxicidade , Mamíferos/metabolismo
3.
Pathogens ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839543

RESUMO

Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.

4.
Appl Biochem Biotechnol ; 195(4): 2282-2293, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35802241

RESUMO

The Vitrus vinifera fruit extract was used to make silver nanoparticles (AgNPs) utilizing a green chemical technique. The biosynthesized Tween-20/Vitrus vinifera-AgNPs were observed by UV-Vis spectrophotometry. Fourier transform infrared spectroscopy, scanning transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties. The spherical form of AgNPs was confirmed by transmission electron microscopy. The peaks in the Tween-20/Vitrus vinifera-AgNPs have an average crystallite size that is found to be 46 nm according to powder X-ray diffraction examination. Biosynthesized AgNPs had a significant effect on bone osteosarcoma MG63 cells with 55% inhibition, respectively, using MTT assay. The effective dangerous concentration of Tween-20/Vitrus vinifera with AgNP nanoparticles was less harmful to MG63 cells. The results of antibacterial activity showed that Tween-20/Vitrus vinifera-AgNPs effectively inhibited Eggerthella lenta and Staphylococcus epidermis bacteria.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Polissorbatos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus , Química Verde , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Appl Biochem Biotechnol ; 195(6): 3699-3718, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35349084

RESUMO

Palladium nanoparticles (Pd NPs) have been considered as a potential candidate in the field of biomedical applications due to its unique properties such as huge catalytic, hydrogen storage, and sensing behavior. Therefore, Pd NPs have shown to have a significant potential for the development of antimicrobials, wound healing, antioxidant, and anticancer property in recent days. There are plenty of reports that showed superior properties of noble metals. However, only very few studies have been undertaken to explore the advantage of Pd NPs in the field of biomedical applications. This review reports detailed and comprehensive studies comprising of the synthesis, characterization, and potential applications of Pd NPs in biomedicine. This report provides evidences in the literature documented by early researchers to understand the potential applications of Pd NPs to be explored in various fields.


Assuntos
Nanopartículas Metálicas , Paládio , Antibacterianos , Antioxidantes , Catálise
6.
J Hazard Mater ; 433: 128720, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366447

RESUMO

Marine pollution is one of the most underlooked forms of pollution as it affects most aquatic lives and public health in the coastal area. The diverse form of the hazardous pollutant in the marine ecosystem leads the serious genetic level disorders and diseases which include cancer, diabetes, arthritis, reproductive, and neurological diseases such as Parkinson's, Alzheimer's, and several microbial infections. Therefore, a recent alarming study on these pollutants, the microplastics have been voiced out in many countries worldwide, it was even found to be in the human placenta. In recent times, nanomaterials have demonstrated their potential in the detection and remediation of sensitive contaminants. In this review, we presented a comprehensive overview of the source, and distribution of diverse marine pollution on both aquatic and human health by summarizing the concentration of diverse pollutions (heavy metals, pesticides, microbial toxins, and micro/nano plastics) in marine samples such as soil, water, and seafood. Followed by emphasizing its ecotoxicological impact on aquatic animal life and coastal public health. Also discussed are the applicability and advancements of nanomaterials and nano-based biosensors in the detection, prevention, and remediation of diverse pollution in the marine ecosystem.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Pollut ; 304: 119207, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351595

RESUMO

The exposure of benzo [a]pyrene (BaP) in recent times is rather unavoidable than ever before. BaP emissions are sourced majorly from anthropogenic rather than natural provenance from wildfires and volcanic eruptions. A major under-looked source is via the consumption of foods that are deep-fried, grilled, and charcoal smoked foods (meats in particular). BaP being a component of poly aromatic hydrocarbons has been classified as a Group I carcinogenic agent, which has been shown to cause both systemic and localized effects in animal models as well as in humans; has been known to cause various forms of cancer, accelerate neurological disorders, invoke DNA and cellular damage due to the generation of reactive oxygen species and involve in multi-generational phenotypic and genotypic defects. BaP's short and accumulated exposure has been shown in disrupting the fertility of gamete cells. In this review, we have discussed an in-depth and capacious run-through of the various origins of BaP, its economic distribution and its impact as well as toxicological effects on the environment and human health. It also deals with a mechanism as a single compound and its ability to synergize with other chemicals/materials, novel sensitive detection methods, and remediation approaches held in the environment.


Assuntos
Benzo(a)pireno , Poluentes Ambientais , Animais , Benzo(a)pireno/análise , Benzo(a)pireno/toxicidade , Carcinógenos , Carvão Vegetal , Poluentes Ambientais/toxicidade , Carne/análise
8.
Appl Biochem Biotechnol ; 194(1): 37-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762267

RESUMO

In the Asian region, Helicobacter pylori infects about 80% populations, which is most leading cause of peptic ulcers, and it is an asymptomatic infection. Studies reported that the particular bacteria carry specific virulence factors that leads to severe complications. These virulence factors can be used as a drug targets to inhibit their growth and pathogenicity. Chronic infection with H. pylori virulence factors are CagA, VacA and HtrA positive strains the risk factor of gastric cancer. In this study, we aimed to study the antagonistic interaction pattern between the potential eight algal peptides against the virulence factors of H. pylori through in silico analysis intended to treat peptic ulcer and prevent the further complications such as cancer. The proteins of virulent factors are docked using C-Docker algorithm and calculated the bind energy of the complexes. The results showed that the peptide derived from a green alga, Tetradesmus sp. are active against the three virulent factors such as cag-A, vac-A, and Htr-A with multiple hydrogen, vdW, electrostatic interactions, and mild π-hydrophobic bindings with the libdock energy score for CagA, VacA and HtrA are 175.625, 158.603 and 89.397 kcal/mol. These primes and the peptide lead to develop a better and potential inhibitors against H. pylori infection.


Assuntos
Proteínas de Algas/química , Proteínas de Bactérias , Clorófitas/química , Helicobacter pylori , Peptídeos/química , Fatores de Virulência , Proteínas de Algas/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Simulação por Computador , Helicobacter pylori/química , Helicobacter pylori/patogenicidade , Peptídeos/farmacologia , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/química
9.
Microb Pathog ; 160: 105189, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530072

RESUMO

The outbreak of the novel coronavirus (COVID-19) has affected millions of lives and it is one of the deadliest viruses ever known and the effort to find a cure for COVID-19 has been very high. The purpose of the study was to investigate the anti-COVID effect from the peptides derived from microalgae. The peptides from microalgae exhibit antimicrobial, anti-allergic, anti-hypersensitive, anti-tumor and immune-modulatory properties. In the In silico study, 13 cyanobacterial specific peptides were retrieved based on the extensive literature survey and their structures were predicted using Discovery Studios Visualizer. The spike protein of the novel COVID19 was retrieved from PDB (6LU7) and further molecular docking was done with the peptides through CDOCKER. The five peptides were bound clearly to the spike protein (SP) and their inhibitory effect towards the SP was promising among 13 peptides were investigated. Interestingly, LDAVNR derived from S.maxima have excellent binding and interaction energy showed -113.456 kcal/mol and -71.0736 kcal/mol respectively to target SP of COVID. The further investigation required for the in vitro confirmation of anti-COVID from indigenous microalgal species for the possible remedy in the pandemic.


Assuntos
Antivirais/química , Microalgas , Peptídeos/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Simulação por Computador , Microalgas/química , Simulação de Acoplamento Molecular
10.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1963-1976, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32468137

RESUMO

Phytochemical mediated synthesis of nanoparticles has gained great interest in the field of cancer therapeutics. We attempted a simple and stable synthesis of gold nanoparticles (AuNPs) with Myricetin (Myr) adopting ultrasound-assisted method. Further, we evaluated anticancer activity of the synthesized nanoparticles. The physico-chemical properties of biosynthesized Myr-AuNPs were characterized by UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and particle size analysis. The study reports of Myr-AuNPs showed spherical-shaped particles with a size of < 50 nm. Stability of the particles was increased in various physiological media. Furthermore, the graph theoretical network analysis of Myr-AuNPs indicated that the probable binding with the mTOR is an effective target for breast cancer cells. In silico molecular docking study of Myr-AuNPs in human mTOR kinase was found to be strong binding. The IC50 value of Myr-AuNPs was calculated as 13 µg mL-1 against MCF-7 cell line. The AO/EB and DAPI stainings confirmed the anticancer activity by Myr-AuNPs-treated cells showed a good proportion of dead cells evidenced with formation of pro-apoptotic bodies. In addition, Myr-AuNPs exhibited depolarization of mitochondrial membrane potential and production of reactive oxygen species. This study proves that Myr-AuNPs holds great promise to use against breast cancer as a potent anticancer drug. Graphical abstract A schematic representation for the biosynthesis of Myr-AuNPs.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Neoplasias da Mama , Flavonoides/síntese química , Ouro/química , Nanopartículas Metálicas/química , Ondas Ultrassônicas , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Feminino , Flavonoides/administração & dosagem , Ouro/administração & dosagem , Humanos , Células MCF-7 , Nanopartículas Metálicas/administração & dosagem
11.
Sci Rep ; 9(1): 5787, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962456

RESUMO

Silver nanoparticles (AgNPs) are gaining importance in health and environment. This study synthesized AgNPs using the bark extract of a plant, Toxicodendron vernicifluum (Tv) as confirmed by a absorption peak at 420 nm corresponding to the Plasmon resonance of AgNPs. The AgNPs were spherical, oval-shaped with size range of 2-40 nm as evident by field emission transmission electron microscopy (FE-TEM) and particle size analysis (PSA). The particles formed were crystalline by the presence of (111), (220) and (200) planes, as revealed by X ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The presence of amine, amide, phenolic, and alcoholic aromatics derived from Tv extract was found to be capping and or reducing agents as evident by Fourier-transform infrared spectroscopy (FTIR) spectra. The Tv-AgNPs were observed to be biocompatible to chick embryonic and NIH3T3 cells at various concentrations. Interestingly, Tv-AgNPs at the concentration of 320 µg. mL-1 induced 82.5% of cell death in human lung cancer, A549 cells and further 95% of cell death with annexin V FITC/PI based apoptosis. The Tv-AgNPs selectively targeted and damaged the cancer cells through ROS generation. The Tv-AgNPs displayed minimal inhibitory concentration (MIC) of 8.12 µg.mL-1 and 18.14 µg.mL-1 against STEC and H. pylori respectively. This multi-potent property of Tv-AgNPs was due to shape and size specific property that facilitated easy penetration into the bacterial and cancer cells for targeted therapy.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Helicobacter pylori/efeitos dos fármacos , Nanopartículas Metálicas/química , Células A549 , Animais , Antibacterianos/toxicidade , Antineoplásicos/toxicidade , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Extratos Vegetais/química , Prata/química , Toxicodendron/química
12.
J Photochem Photobiol B ; 190: 103-109, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30508758

RESUMO

In this report, copper oxide nanoparticles (TA-CuO NPs) were synthesized using cell-free extract of Trichoderma asperellum and assessed their photothermal induced anticancerous activity. The fungal mediated TA-CuO NPs was confirmed by the surface plasmon resonance at 285-295 nm. The amide (CO) and aromatic (CC) groups in secondary metabolites of the extract was found to be an encapsulating or reducing agents for TA-CuO NPs, as indicated by IR spectra. Crystalline nature by cubic face-centered structure of the TA-CuO NPs was confirmed by XRD and their size ranges from 10 to 190 nm and an average of 110 nm by particle size analyzer (PSA). The Ultra HRSEM study revealed spherical shaped TA-CuO NPs. The FETEM results were also in strong agreement with PSA and UHR SEM. The survey-scan spectrum of XPS indicated the presence of C1s (47.83%), Cu2p (16.11%), Na1s (2.2%) and O1s (33.86%). The cell death was significantly found higher in photothermal induced by near-infrared laser (TA-CuO NPs-NIR) treated than that of TA-CuO NPs treatment. The level of ROS (35.62%) was higher in the treated cells than that of the untreated control, in accordance with the nucleus damage and losses in the mitochondrial membrane potential (ΔΨm). The upregulation of Bcl-2 in the untreated cells and Cas-3 in TA-CuO NPs-NIR treated cells was confirmed by western blot analysis. This work agreed with the potential biogenic TA-CuO NPs for promising in vitro photothermolysis of cancer cells, for the development of anticancer nanotherapeutics.


Assuntos
Antineoplásicos/metabolismo , Cobre/metabolismo , Fungos/metabolismo , Terapia a Laser/métodos , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Cobre/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Int J Biol Macromol ; 118(Pt B): 1542-1549, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170364

RESUMO

This paper reports the synthesis of chitosan nanoparticles (T-CSNPs) using the fungal enzyme of Trichoderma harzianum and its biocompatibility, antioxidant and bactericidal properties. The T-CSNPs synthesis was confirmed by absorbance at 280 nm using UV-Vis spectrophotometer. T-CSNPs were of spherical shape, as evident by field emission transmission electron microscopic (FETEM) analysis, and the average size of T-CSNPs was 90.8 nm, as calculated using particle size analyzer (PSA). The functional groups showed modifications of chitosan in T-CSNPs as evident by fourier-transform infrared spectroscopic (FTIR) analysis. T-CSNPs were found soluble at the wide range of pH, showing 100% solubility at pH 1-3 and 72% at pH 10. The T-CSNPs exhibited antioxidant property in a dose-dependent manner with pronounced activity at 100 mg·mL-1. The T-CSNPs also showed bactericidal activity against Staphylococcus aureus and Salmonella enterica Typhimurium by causing detrimental effects on bacterial cells. The T-CSNPs (50 µg·mL-1) did not display any cytotoxic effect on murine fibroblast NIH-3T3 cells, as evident by cell viability and acridine orange/ethidium bromide staining assays, which confirmed biocompatibility of the nanoparticles. This work suggested further investigations on the utilization of the mycosynthesized nanochitosan in biomedical applications.


Assuntos
Quitosana/química , Quitosana/farmacologia , Teste de Materiais , Nanopartículas/química , Trichoderma/enzimologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Quitosana/síntese química , Camundongos , Células NIH 3T3 , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
14.
Microb Pathog ; 113: 68-73, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29056495

RESUMO

Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl4. It was found to be 4-7 nm sized cubical nanoparticles with aspect ratio of 1.4 were synthesized using 0.5 mM of HAuCl4 by HRSEM analysis. The crystalline planes (111), (200), (220), (311) and elemental signal of gold was observed by XRD and EDS respectively. The major constitutes, galactose and 3,6-anhydrogalactose in the alga played a critical role in the synthesis of crystalline AuNPs with cubical dimension. Further, the antibacterial potential of synthesized AuNPs was tested against human pathogens, Escherichia coli and Staphylococcus aureus. The synthesized AuNPs found biocompatible up to 100 ppm and high concentration showed an inhibition against cancer cell. This novel report could be helped to exploration of bioresources to material synthesis for the application of biosensor and biomedical application.


Assuntos
Antibacterianos/farmacologia , Cloretos/química , Cloretos/farmacologia , Escherichia coli/efeitos dos fármacos , Compostos de Ouro/química , Compostos de Ouro/farmacologia , Nanopartículas Metálicas/química , Rodófitas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Galactose/análogos & derivados , Galactose/metabolismo , Ouro/química , Humanos
15.
Colloids Surf B Biointerfaces ; 102: 708-17, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23117153

RESUMO

Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively.


Assuntos
Caspases/metabolismo , Extratos Vegetais/química , Podophyllum/química , Prata/química , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA