Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9305, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291184

RESUMO

Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.


Assuntos
Arachis , Tetraploidia , Arachis/genética , Filogenia , Genoma de Planta , Melhoramento Vegetal , Poliploidia
2.
Genes (Basel) ; 14(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37107625

RESUMO

Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.


Assuntos
Fabaceae , Trifolium , Trifolium/genética , Diploide , Filogenia , Poliploidia
3.
Cells ; 12(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611943

RESUMO

Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded ßC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of ßC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sßC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of ßC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sßC1 protein of SiYVB restored these functions of ßC1 protein. Thus, the dynamic phosphorylation of serine-33 in ßC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission.


Assuntos
Begomovirus , Hemípteros , Animais , Humanos , Begomovirus/genética , Terpenos/metabolismo , Cisteína/metabolismo , Nicotiana/metabolismo
4.
3 Biotech ; 11(1): 14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33442513

RESUMO

The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.

5.
Braz. arch. biol. technol ; 64: e21210018, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360192

RESUMO

Abstract The bacteria residing in the gut of honey bees (HB) has demonstrated a significant role in protecting bees against various pathogens, production of honey and wax. However, no information exists about the antibacterial potential of bacterial isolates from gut of Asian HB, Apis cerana Indica F. (Hymenoptera: Apidae), against human pathogens. This study aims to investigate the antibacterial and multienzyme potential of aerobic bacteria from A. cerana gut using culture dependent approach. A total of 12 HB gut bacteria were characterized morphologically and biochemically. These strains were further screened for their antimicrobial activity against pathogenic human microorganisms Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Bacillus licheniformis and Bacillus subtilis using cross streak (primary screening) and agar well diffusion methods (secondary screening). Preliminary characterization of cell-free supernatant (CFS) of two promising isolates was performed by measuring lactic acid concentrations, enzymatic digestion of antimicrobial compounds, stability over a range of temperature, pH and amplification of spaS (subtilin) and spoA (subtilosin) genes. In primary screening, among 12 HB isolates, eight strains showed statistically significant highest zones of inhibition (p≤0.05) against E. coli, K. pneumoniae and P. aeruginosa. 16S rRNA sequencing revealed that these isolates belong to Bacillus genus, identified as B. tequilensis, B. pumilus, B. xiamenensis, B. subtilis, B. amyloliquefaciens, B. safensis, B. licheniformis, B. altitudinis (Accession numbers: MT186230-MT186237). Secondary screening revealed that among eight isolates, B. subtilis and B. amyloliquefaciens showed statistically significantly strong inhibition (p≤0.05) against all tested pathogens. Antibiotic susceptibility testing revealed that both isolates were resistant to antibiotics and possesses proteolytic, lipolytic and cellulolytic activities. The nature of the compound causing inhibitory activity was found to be proteinaceous and showed stability over a wide range of temperature as well as pH. PCR study confirmed the presence of bacteriocins by successful amplification of important antimicrobial peptide biosynthesis genes spaS and spoA. These results suggest that the HB gut is a home to bacteria that possess antimicrobial activity and important enzymes with antimicrobial potential. To our knowledge, this is the first report demonstrating the antimicrobial potential of bacteria isolated from gut of HB (A. cerana) against human pathogens.

6.
3 Biotech ; 9(6): 204, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31139535

RESUMO

Leaf samples of Cucumis Sativus L. (C. sativus) (Family; Cucurbitaceae) showing vein thickening, mild leaf curling and leaf enations were collected from the farmer's field. Amplification of the full-length viral molecules was performed through rolling circle amplification (RCA). Cloning of the full-length viral molecules was done through standard cloning procedure followed by sequencing. Sequence similarity analysis and phylogenetic studies showed that the virus associated with leaf curling and enations in C. sativus was a bipartite begomovirus, where DNA-A and DNA-B showed highest nucleotide sequence homology of 98% and 97% to tomato leaf curl Palampur virus (ToLCPMV) from India. Attempts to isolate betasatellites and alphasatellites through PCR using RCA product as template, did not result in any amplification. A maximum likelihood phylogenetic tree grouped DNA-A and B components with other isolates from India. SDT was used to find the pairwise identity scores of different sequences of ToLCPMV present in the database. Phylogenetic analysis showed that sequences of ToLCPMV DNA-A and B components in this study share high degree of homology with existing viruses and are isolates of ToLCPMV-India. Infectious molecules of both components (Accessions, MG252783 and MG252784, respectively) were constructed for infectivity analysis to fulfill the Koch's postulate. Infectivity analysis revealed that ToLCPMV DNA-A is infectious to model host plant Nicotiana benthamiana and viral accumulation was confirmed through Southern blot analysis. Accumulation of DNA-B was confirmed through PCR. Infectivity analysis was also conducted using the original host, C. sativus, but plants were unable to survive the agroinoculation. To our knowledge this is the first report of ToLCPMV associated with C. sativus L. in Pakistan.

7.
Gene ; 686: 43-48, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30399424

RESUMO

Papaya leaf curl virus (PaLCuV) is a begomovirus (genus Begomovirus; family Geminiviridae) with a monopartite genome that is usually associated with beta- and alphasatellites in plants. Geminiviruses are DNA viruses with small circular genomes that occur as minichromosomes in the nucleus and are susceptible to post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). Transient expression of the PaLCuV V2 (PV2) protein together with the green fluorescent protein (GFP) in Nicotiana benthamiana resulted in enhanced levels of GFP fluorescence and GFP mRNA, indicative of suppression of PTGS. Expression of PV2 from a Potato virus X vector restored GFP expression in N. benthamiana plants harbouring a transcriptionally silenced GFP transgene, indicative of suppression of TGS. The results show that the PV2 protein encoded by PaLCuV has both suppressor of PTGS and TGS activity and is an important factor in overcoming host RNA-silencing based defenses.


Assuntos
Begomovirus/metabolismo , Inativação Gênica , Nicotiana/metabolismo , Nicotiana/virologia , Transcrição Gênica , Proteínas Virais/biossíntese , Begomovirus/genética , Nicotiana/genética , Proteínas Virais/genética
8.
Virol J ; 15(1): 134, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30165872

RESUMO

BACKGROUND: Geminiviruses cause major losses to several economically important crops. Pedilanthus leaf curl virus (PeLCV) is a pathogenic geminivirus that appeared in the last decade and is continuously increasing its host range in Pakistan and India. This study reports the identification and characterization of PeLCV-Petunia from ornamental plants in Pakistan, as well as geographical, phylogenetic, and recombination analysis. METHODS: Viral genomes and associated satellites were amplified, cloned, and sequenced from Petunia atkinsiana plants showing typical geminivirus infection symptoms. Virus-satellite complex was analyzed for phylogenetic and recombination pattern. Infectious clones of isolated virus and satellite molecules were constructed using a partial dimer strategy. Infectivity analysis of PeLCV alone and in combination with Digera yellow vein betasatellite (DiYVB) was performed by Agrobacterium infiltration of Nicotiana benthamiana and Petunia atkinsiana plants with infectious clones. RESULTS: PeLCV, in association with DiYVB, was identified as the cause of leaf curl disease on P. atkinsiana plants. Sequence analysis showed that the isolated PeLCV is 96-98% identical to PeLCV from soybean, and DiYVB has 91% identity to a betasatellite identified from rose. Infectivity analysis of PeLCV alone and in combination with DiYVB, performed by Agrobacterium infiltration of infectious clones in N. benthamiana and P. atkinsiana plants, resulted in mild and severe disease symptoms 14 days after infiltration, respectively, demonstrating that these viruses are natural disease-causing agents. Southern blot hybridization indicated successful replication of the virus-betasatellite complex in the infected plants. Phylogenetic analysis suggests that PeLCV originated from Pakistan and later spread to India. Recombination analysis predicted that PeLCV is a donor parent for recombination and evolution of two important begomoviruses, Papaya leaf curl virus (PaLCuV) and Radish leaf curl virus (RaLCuV). The molecular phylogeny of genes encoding coat protein (CP) and replication associated protein (Rep) depict a complex evolutionary pattern of the viruses, with wide diversity in both of the genes. CONCLUSIONS: This study presents PeLCV and DiYVB as a new natural combination resulting in leaf curl disease on P. atkinsiana plants. Phylogenetic analysis, in addition to recent agricultural reports, identify PeLCV as an emerging broad host range Begomovirus that is resident in Pakistan and, more recently, has also spread to India. Recombination analysis showed that PeLCV was involved in a natural recombinational event leading to the evolution of two recombinant begomoviruses, RaLCuV and PaLCuV.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Petunia/virologia , Filogeografia , Recombinação Genética , Vírus Satélites/genética , Begomovirus/isolamento & purificação , Southern Blotting , Paquistão , Doenças das Plantas/virologia , Análise de Sequência de DNA , Nicotiana/virologia
9.
BMC Struct Biol ; 18(1): 6, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673347

RESUMO

BACKGROUND: Due to dengue virus disease, half of the world population is at severe health risk. Viral encoded NS2B-NS3 protease complex causes cleavage in the nonstructural region of the viral polyprotein. The cleavage is essentially required for fully functional viral protein. It has already been reported that if function of NS2B-NS3 complex is disrupted, viral replication is inhibited. Therefore, the NS2B-NS3 is a well-characterized target for designing antiviral drug. RESULTS: In this study docking analysis was performed with active site of dengue NS2B-NS3 protein with selected plant flavonoids. More than 100 flavonoids were used for docking analysis. On the basis of docking results 10 flavonoids might be considered as the best inhibitors of NS2B-NS3 protein. The interaction studies showed resilient interactions between ligand and receptor atoms. Furthermore, QSAR and SAR studies were conducted on the basis of NS2B-NS3 protease complex docking results. The value of correlation coefficient (r) 0.95 shows that there was a good correlation between flavonoid structures and selected properties. CONCLUSION: We hereby suggest that plant flavonoids could be used as potent inhibitors of dengue NS2B-NS3 protein and can be used as antiviral agents against dengue virus. Out of more than hundred plant flavonoids, ten flavonoid structures are presented in this study. On the basis of best docking results, QSAR and SAR studies were performed. These flavonoids can directly work as anti-dengue drug or with little modifications in their structures.


Assuntos
Vírus da Dengue/enzimologia , Flavonoides/farmacologia , Peptídeo Hidrolases/química , Plantas/química , Inibidores de Proteases/farmacologia , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Flavonoides/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteases/química , Serina Endopeptidases/química , Relação Estrutura-Atividade , Proteínas Virais/química , Proteínas Virais/metabolismo
10.
Virus Genes ; 49(1): 124-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781196

RESUMO

The Begomovirus genus of the family Geminiviridae comprises the largest group of geminiviruses. The list of begomoviruses is continuously increasing as a result of improvement in the methods for identification. Ornamental rose plants (Rosa chinensis) with highly stunted growth and leaf curling were found in Faisalabad, Pakistan. Plants were analyzed for begomovirus infection, through rolling circle amplification and PCR methods. Based on complete genome sequence homologies with other begomoviruses, a new begomovirus species infecting the rose plants was discovered. In this paper, we propose a new species name, Rose leaf curl virus (RoLCuV), for the virus. RoLCuV showed close identity (83 %) with Tomato leaf curl Pakistan virus, while associated betasatellite showed 96 % identity with Digera arvensis yellow vein betasatellite (DiAYVB), justifying a new isolate for the betasatellite. Recombination analysis of newly identified begomovirus revealed it as a recombinant of tomato leaf curl Pakistan virus from its coat protein region. The infectious molecules for virus/satellite were prepared and inoculated through Agrobacterium tumefaciens to N. benthamiana plants. RoLCuV alone was unable to induce any level of symptoms on N. benthamiana plants, but co-inoculation with cognate betasatellite produced infection symptoms. Further investigation to understand the trans-replication ability of betasatellites revealed their flexibility to interact with Rose leaf curl virus.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , DNA Satélite/genética , DNA Viral/química , DNA Viral/genética , Genoma Viral , Rosa/virologia , Agrobacterium tumefaciens/genética , Begomovirus/crescimento & desenvolvimento , Análise por Conglomerados , Dados de Sequência Molecular , Paquistão , Filogenia , Doenças das Plantas/virologia , Análise de Sequência de DNA , Homologia de Sequência , Nicotiana/virologia , Transformação Genética
11.
Virol J ; 8: 122, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21410988

RESUMO

Cotton leaf curl disease is caused by a geminivirus complex that involves multiple distinct begomoviruses and a disease-specific DNA satellite, cotton leaf curl Multan betasatellite (CLCuMB), which is essential to induce disease symptoms. Here we have investigated the use of RNA interference (RNAi) for obtaining resistance against one of the viruses, Cotton leaf curl Multan virus (CLCuMV), associated with the disease. Three hairpin RNAi constructs were produced containing either complementary-sense genes essential for replication/pathogenicity or non-coding regulatory sequences of CLCuMV. In transient assays all three RNAi constructs significantly reduced the replication of the virus in inoculated tissues. However, only one of the constructs, that targeting the overlapping genes involved in virus replication and pathogenicity (the replication-associated protein (Rep), the transcriptional activator protein and the replication enhancer protein) was able to prevent systemic movement of the virus, although the other constructs significantly reduced the levels of virus in systemic tissues. In the presence of CLCuMB, however, a small number of plants co-inoculated with even the most efficient RNAi construct developed symptoms of virus infection, suggesting that the betasatellite may compromise resistance. Further analyses, using Rep gene sequences of distinct begomoviruses expressed from a PVX vector as the target, are consistent with the idea that the success of the RNAi approach depends on sequence identity to the target virus. The results show that selection of both the target sequence, as well as the levels of identity between the construct and target sequence, determine the outcome of RNAi-based resistance against geminivirus complexes.


Assuntos
Geminiviridae/genética , Doenças das Plantas/virologia , Interferência de RNA , Geminiviridae/fisiologia , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Nicotiana/imunologia , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
12.
Mol Plant Pathol ; 11(2): 245-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447273

RESUMO

A functional analysis of the V2 protein of two monopartite begomoviruses, Papaya leaf curl virus (PaLCuV) and Cotton leaf curl Kokhran virus (CLCuKoV), has been performed. Expression of the V2 gene from a Potato virus X (PVX) vector resulted in severe leaf curling followed by a hypersensitive response (HR) in Nicotiana benthamiana and N. tabacum, demonstrating that the V2 protein is a pathogenicity determinant and a target of host defence responses. Agroinfiltration of a PVX vector expressing the V2 protein resulted in cell death in the infiltrated area. Subsequently, a systemic HR developed that was associated with the long-distance spread of the virus and led to the death of the plant. V2 amino acid sequences encompassing a conserved putative protein kinase C (PKC) phosphorylation motif were shown to be essential for the elicitation of cell death. In co-inoculation experiments, the transient expression of the C2 protein of PaLCuV or Cotton leaf curl Multan virus under the control of the Cauliflower mosaic virus 35S promoter inhibited the HR induced by V2 in the agroinfiltrated area. These findings demonstrate that the V2 protein of monopartite begomoviruses is a pathogenicity determinant and induces an HR that can be suppressed by the C2 protein. The induction and suppression of HR have been demonstrated previously in bipartite begomoviruses and our results extend this to monopartite begomoviruses.


Assuntos
Begomovirus/metabolismo , Nicotiana/imunologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Morte Celular , Deleção de Genes , Dados de Sequência Molecular , Doenças das Plantas/virologia , Homologia de Sequência de Aminoácidos , Nicotiana/citologia , Proteínas Virais/química
13.
Virol J ; 4: 10, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17239233

RESUMO

Whitefly-transmitted geminiviruses (genus Begomovirus) are phytopathogens that cause heavy losses to crops worldwide. Efforts to engineer resistance against these viruses are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a virion-sense gene (AV2) to develop resistance against Tomato leaf curl New Delhi virus, a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that tobacco plants transformed with an antisense construct targeting this gene are resistant to the virus. Following challenged with the virus, transgenic plants remained symptomless, although viral DNA could be detected in some plants by PCR. This is the first report of transgenic resistance against a bipartite begomovirus obtained by targeting a virion-sense gene. The relatively conserved nature of the gene suggests that the technology may be useful to develop broad-spectrum resistance which is required because of the fact that plants are often infected with multiple begomoviruses in the field.


Assuntos
Begomovirus/patogenicidade , Inativação Gênica , Nicotiana/virologia , Plantas Geneticamente Modificadas/virologia , RNA Antissenso/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Begomovirus/genética , Begomovirus/metabolismo , DNA Viral/análise , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , RNA Antissenso/genética , Nicotiana/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA