RESUMO
The vascular endothelium has been discovered in the past several years to be important in shaping the cellular immune response. During the immune response the vascular endothelium is constantly perturbed by biologically potent molecules, including the complement activation peptides, C3a and C5a. Despite the importance of C3a and C5a in inflammation and immunity, their role in modulating lymphocyte function via activation of vascular endothelial cells is unknown. Accordingly, we investigated the regulated expression of the C3a and C5a receptors (complement anaphylatoxin C3a receptor [C3aR] and complement anaphylatoxin C5a receptor 1 [C5aR1]) on human umbilical vascular endothelial cells (HUVECs) and examined how C3a or C5a activation of HUVECs affects the activation and polarization of lymphatic cells. Our findings demonstrated that C3a and C5a increase C3aR and C5aR1 expression by HUVECs as well as directing their cellular transmigration and spreading through transwell filters. Moreover, C3a- or C5a-stimulated endothelial cells: (1) caused activation of B-lymphoblasts with significant increase in Fas Ligand (CD95L) (FasL), CD69, and IL-R1 expression, and (2) skewed T-lymphoblast cells toward a Th1 subtype, (CD4+ /CCR5+ ) that correlated with significant increase of IFN-γ. Collectively, these data indicate that C3a and C5a signaling is important in the activation and polarization of lymphocytes as they traffic through the vascular endothelium during the immune response.
Assuntos
Anafilatoxinas/imunologia , Linfócitos B/imunologia , Complemento C3a/imunologia , Complemento C5a/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Células Cultivadas , Ativação do Complemento/imunologia , Endotélio Vascular/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Receptor da Anafilatoxina C5a/imunologia , Receptores de Complemento/imunologia , Transdução de Sinais/imunologiaRESUMO
The purpose of this study was to identify a membrane-bound complement inhibitor that could be overexpressed on retinal pigment epithelial cells (RPE) providing a potential therapy for age-related macular degeneration (AMD). This type of therapy may allow replacement of damaged RPE with cells that are able to limit complement activation in the retina. Complement Receptor 1 (CR1) is a membrane-bound complement inhibitor commonly found on erythrocytes and immune cells. In this study, QPCR and flow cytometry data demonstrated that CR1 is not well-expressed by RPE, indicating that its overexpression may provide extra protection from complement activation. To screen CR1 for this ability, a stable CR1-expressing ARPE19 line was created using a combination of antibiotic selection and FACS. Cell-based assays were used to demonstrate that addition of CR1 inhibited deposition of complement proteins C3b and C6 on the transfected line. In the end, this study identifies CR1 as a complement inhibitor that may be overexpressed on stem cell-derived RPE to create a potential "enhanced" cell therapy for AMD. A combination cell/complement therapy may create transplantable RPE better suited to avoid complement-mediated lysis and limit chronic inflammation in the retina.
Assuntos
Células Epiteliais/imunologia , Degeneração Macular/imunologia , Receptores de Complemento 3b/imunologia , Retina/imunologia , Epitélio Pigmentado da Retina/imunologia , Pigmentos da Retina/imunologia , Linhagem Celular , Ativação do Complemento/imunologia , Complemento C3b/imunologia , Complemento C6/imunologia , Eritrócitos/imunologia , HumanosRESUMO
The CR-4 human embryonic stem cell line was derived from the inner cell mass of a developing blastocyst. This cell line has been adapted to grow in feeder-free conditions and is especially well-suited for differentiation to retinal pigment epithelium. The line demonstrates a normal human 46,XX female karyotype. Pluripotency was assessed through qRT-PCR for expression of NANOG, OCT-4, and SOX-2. A teratoma assay was performed and results were positive for all three germ layers. Testing for Mycoplasma was negative.
Assuntos
Células-Tronco Embrionárias Humanas/citologia , Epitélio Pigmentado da Retina/citologia , Animais , Blastocisto/citologia , Diferenciação Celular , Linhagem Celular , Feminino , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Cariótipo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Fluorescência , Fagocitose , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/transplante , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Listeria monocytogenes is an intracellular Gram-positive bacterium that induces expression of type I IFNs (IFN-α/IFN-ß) during infection. These cytokines are detrimental to the host during infection by priming leukocytes to undergo L. monocytogenes-mediated apoptosis. Our previous studies showed that C5aR1-/- and C3aR-/- mice are highly susceptible to L. monocytogenes infection as a result of increased IFN-ß-mediated apoptosis of major leukocyte cell populations, including CD4+ and CD8+ T cells. However, the mechanisms by which C3a and C5a modulate IFN-ß expression during L. monocytogenes infection were not examined in these initial investigations. Accordingly, we report in this article that C5a and C3a suppress IFN-ß production in response to L. monocytogenes via cyclic di-AMP (c-di-AMP), a secondary messenger molecule of L. monocytogenes, in J774A.1 macrophage-like cells and in bone marrow-derived dendritic cells (BMDCs). Moreover, C5a and C3a suppress IFN-ß production by acting through their respective receptors, because no inhibition was seen in C5aR1-/- or C3aR-/- BMDCs, respectively. C5a and C3a suppress IFN-ß production in a manner that is dependent on Bruton's tyrosine kinase, p38 MAPK, and TANK-binding kinase 1 (TBK1), as demonstrated by the individual use of Bruton's tyrosine kinase, p38 MAPK, and TBK1 inhibitors. Pretreatment of cells with C5a and C3a reduced the expression of the IFN-ß signaling molecules DDX41, STING, phosphorylated TBK1, and phosphorylated p38 MAPK in wild-type BMDCs following treatment with c-di-AMP. Collectively, these data demonstrate that C3a and C5a, via direct signaling through their specific receptors, suppress IFN-ß expression by modulation of a distinct innate cytosolic surveillance pathway involving DDX41, STING, and other downstream molecular targets of L. monocytogenes-generated c-di-AMP.
Assuntos
Complemento C3a/imunologia , Complemento C5a/imunologia , Imunidade Inata/imunologia , Interferon beta/imunologia , Listeriose/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Complemento C3a/metabolismo , Complemento C5a/metabolismo , AMP Cíclico , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Interferon beta/biossíntese , Listeria monocytogenes , Listeriose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Listeria monocytogenes is a major cause of mortality resulting from food poisoning in the United States. In mice, C5 has been genetically linked to host resistance to listeriosis. Despite this genetic association, it remains poorly understood how C5 and its activation products, C5a and C5b, confer host protection to this Gram-positive intracellular bacterium. In this article, we show in a systemic infection model that the major receptor for C5a, C5aR1, is required for a normal robust host immune response against L. monocytogenes. In comparison with wild-type mice, C5aR1(-/-) mice had reduced survival and increased bacterial burden in their livers and spleens. Infected C5aR1(-/-) mice exhibited a dramatic reduction in all major subsets of splenocytes, which was associated with elevated caspase-3 activity and increased TUNEL staining. Because type 1 IFN has been reported to impede the host response to L. monocytogenes through the promotion of splenocyte death, we examined the effect of C5aR1 on type 1 IFN expression in vivo. Indeed, serum levels of IFN-α and IFN-ß were significantly elevated in L. monocytogenes-infected C5aR1(-/-) mice. Similarly, the expression of TRAIL, a type 1 IFN target gene and a proapoptotic factor, was elevated in NK cells isolated from infected C5aR1(-/-) mice. Treatment of C5aR1(-/-) mice with a type 1 IFNR blocking Ab resulted in near-complete rescue of L. monocytogenes-induced mortality. Thus, these findings reveal a critical role for C5aR1 in host defense against L. monocytogenes through the suppression of type 1 IFN expression.
Assuntos
Interferon-alfa/genética , Interferon beta/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Baço/imunologia , Anafilatoxinas/imunologia , Animais , Anticorpos/farmacologia , Apoptose , Carga Bacteriana , Caspase 3/genética , Caspase 3/imunologia , Complemento C5a/genética , Complemento C5a/imunologia , Complemento C5b/genética , Complemento C5b/imunologia , Expressão Gênica , Interferon-alfa/imunologia , Interferon beta/imunologia , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Listeriose/mortalidade , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Linfócitos/imunologia , Linfócitos/microbiologia , Linfócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Receptores de Interferon/antagonistas & inibidores , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologiaRESUMO
Listeria monocytogenes is a Gram-positive intracellular bacterium that is acquired through tainted food and may lead to systemic infection and possible death. Despite the importance of the innate immune system in fighting L. monocytogenes infection, little is known about the role of complement and its activation products, including the potent C3a anaphylatoxin. In a model of systemic L. monocytogenes infection, we show that mice lacking the receptor for C3a (C3aR(-/-)) are significantly more sensitive to infection compared with wild-type mice, as demonstrated by decreased survival, increased bacterial burden, and increased damage to their livers and spleens. The inability of the C3aR(-/-) mice to clear the bacterial infection was not caused by defective macrophages or by a reduction in cytokines/chemokines known to be critical in the host response to L. monocytogenes, including IFN-γ and TNF-α. Instead, TUNEL staining, together with Fas, active caspase-3, and Bcl-2 expression data, indicates that the increased susceptibility of C3aR(-/-) mice to L. monocytogenes infection was largely caused by increased L. monocytogenes-induced apoptosis of myeloid and lymphoid cells in the spleen that are required for ultimate clearance of L. monocytogenes, including neutrophils, macrophages, dendritic cells, and T cells. These findings reveal an unexpected function of C3a/C3aR signaling during the host immune response that suppresses Fas expression and caspase-3 activity while increasing Bcl-2 expression, thereby providing protection to both myeloid and lymphoid cells against L. monocytogenes-induced apoptosis.
Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/imunologia , Complemento C3a/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/patologia , Receptores de Complemento/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Complemento C3a/imunologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Listeria monocytogenes/patogenicidade , Listeriose/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia , Receptor fas/antagonistas & inibidores , Receptor fas/biossínteseRESUMO
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia, and approximately 80% of patients with cystic fibrosis are infected with this bacterium. To investigate the overall role of complement and the complement activation pathways in the host defense against P. aeruginosa pulmonary infection, we challenged C3-, C4-, and factor B-deficient mice with P. aeruginosa via intranasal inoculation. In these studies, C3(-/-) mice had a higher mortality rate than C3(+/+) mice. Factor B(-/-) mice, but not C4(-/-) mice, infected with P. aeruginosa had a mortality rate similar to that of C3(-/-) mice, indicating that in this model the alternative pathway of complement activation is required for the host defense against Pseudomonas infection. C3(-/-) mice had 6- to 7-fold more bacteria in the lungs and 48-fold more bacteria in the blood than did C3(+/+) mice at 24 h postinfection. In vitro, phagocytic cells from C3(+/+) or C3(-/-) mice exhibited a decreased ability to bind and/or ingest P. aeruginosa in the presence of C3-deficient serum compared to phagocytic cells in the presence of serum with sufficient C3. C3(-/-) mice displayed a significant increase in neutrophils in the lungs and had higher levels of interleukin-1beta (IL-1beta), IL-6, IL-10, KC, and MIP-2 in the lungs at 24 h postinfection than did C3(+/+) mice. Collectively, these results indicate that complement activation by the alternative pathway is critical for the survival of mice infected with P. aeruginosa and that the protection provided by complement is at least in part due to C3-mediated opsonization and phagocytosis of P. aeruginosa.
Assuntos
Complemento C3/metabolismo , Via Alternativa do Complemento , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Animais , Aderência Bacteriana , Atividade Bactericida do Sangue , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocinas/metabolismo , Complemento C3/deficiência , Complemento C3/genética , Complemento C4/deficiência , Complemento C4/genética , Complemento C4/metabolismo , Fator B do Complemento/deficiência , Fator B do Complemento/genética , Fator B do Complemento/metabolismo , Citocinas/metabolismo , Feminino , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Opsonizantes/metabolismo , Fagocitose , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidadeRESUMO
HbhA of Mycobacterium tuberculosis is a multifunctional binding protein, binding to both sulfated sugars such as heparin and to human complement component C3. HbhA may therefore interact with host molecules and/or host cells during M. tuberculosis infection and play a role in the pathogenesis of this bacterium. The purpose of this study was to use allelic exchange to create an M. tuberculosis strain deficient in expression of HbhA to determine whether this protein's C3-binding activity plays a role in the pathogenesis of M. tuberculosis. An in-frame, 576-bp unmarked deletion in the hbhA gene was created using sacB as a counterselectable marker. Southern blotting and PCR analyses confirmed deletion of hbhA in the DeltahbhA mutant. The DeltahbhA mutant strain grew at a rate similar to that of the parent in broth culture and in J774.A1 murine macrophage-like cells but was deficient in growth compared to the parent strain in the lungs, liver, and spleen of infected mice. In addition, the DeltahbhA mutation did not reduce binding of M. tuberculosis to human C3 or to J774.A1 cells in the presence or absence of serum, suggesting that in the absence of HbhA, other molecules serve as C3-binding molecules on the M. tuberculosis surface. Taken together, these data indicate that HbhA is important in the infectivity of M. tuberculosis, but its ability to bind C3 is not required for mycobacterial adherence to macrophage-like cells. Using the DeltahbhA mutant strain, a second M. tuberculosis C3-binding protein similar in size to HbhA was identified as HupB, but the role of HupB as a C3-binding protein in intact organisms remains to be determined.