Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 25: 104052, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31198832

RESUMO

The data presented here refer to a research article entitled "Self-Assembled Micellar Clusters Based on Triton-X-family Surfactants for Enhanced Solubilization, Encapsulation, Proteins Permeability Control, and Anticancer Drug Delivery" Solomonov et al., 2019. The present article provides the General Procedure for clusterization of Triton-X-based micelles and the effect of (i) metal ion, surfactant, and chelator concentration on the developed clusters formation, (ii) surfactant-chelator relation change, (iii) metal ion-micelles concertation ratio variation, (iv) metal ion replacement, (v) solvent replacement, (vi) kinetics of clusters formation, (vii) hydrophobic fluorescent dye (Coumarin 6) solubilization in aqueous MCs media, (viii) novel anticancer peptidyl drug synthesis and characterization and (ix) the viability of HeLa cells with and without the presence of drug-free Triton-X-based family MCs. These data provide additional insights useful for understanding all aspects of the micellar clusters formation, optimization, and control.

2.
Mater Sci Eng C Mater Biol Appl ; 99: 794-804, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889754

RESUMO

Non-ionic surfactants have raised a considerable interest for solubilization, encapsulation, permeabilization and controlled release of various compounds due to their unique physicochemical properties. Nevertheless, it is still challenging to create convenient self-assembled multifunctional materials with high solubilization and encapsulation capacities by preserving their advanced capabilities to protect loaded cargos without altering their characteristics. In this work, we present an extended concept of micellar clusters (MCs) formation based on partial entrapment and stabilization of chelate ligands by hydrophobic forces found on the non-ionic surfactant micelle interface of the Triton-X family (TX-100/TX-114), followed by subsequent complexation of the preformed structures either by metal ions or a supporting chelator. The formation aspects, inner structure and the role of external factors such as the addition of competitive ligands have been extensively studied. MCs loaded by hydrophobic fluorescent compounds with high encapsulation efficiency demonstrate an excellent optical response in aqueous media without crystallization as well as sufficient increase in solubility of toxic hydrophobic compounds such as bilirubin (>50 times compared to pure surfactants). Furthermore, Triton-X-based MCs provide a unique feature of selective permeability to hydrophilic ligand-switching proteins such as UnaG and BSA demonstrating bright "turn-on" fluorescence signal either inside the cluster or on its interface via complexation. The proposed strategies allowed us to successfully encapsulate and visualize a newly synthesized, highly hydrophobic anticancer PTR-58-CLB-CAMP peptide drug, while MCs loaded by the drug exhibit a considerable antitumor activity against HeLa cells.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Micelas , Polietilenoglicóis/química , Tensoativos/química , Quelantes/química , Eletrólitos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Íons , Ferro/análise , Cinética , Ligantes , Tamanho da Partícula , Permeabilidade , Solubilidade , Soluções , Solventes/química , Temperatura
3.
Langmuir ; 35(12): 4246-4253, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811941

RESUMO

Nano-objects are favored structures for applications such as catalysis and sensing. Although they already provide a large surface-to-volume ratio, this ratio can be further increased by shape-selective plating of the nanostructure surfaces. This process combines the conformity of autocatalytic deposition with the defined nucleation and growth characteristics of colloidal nanoparticle syntheses. However, many aspects of such reactions are still not fully understood. In this study, we investigate in detail the growth of spiky nickel nanotubes in polycarbonate template membranes. One distinctive feature of our synthesis is the simultaneous growth of nanospikes on both the inside and outside of nanotubes while the tubes are still embedded in the polymer. This is achieved by combining the plating process with locally enhanced in situ etching of the poylmer template, for which we propose a theory. Electron microscopy investigations reveal twinning defects as the driving force for the growth of crystalline nanospikes. Deposit crystallinity is ensured by the reducing agent hydrazine. Iminodiacetic acid is not only used as a complexing agent during synthesis but apparently also acts as a capping agent and limits random nucleation on the spike facets. Finally, we apply our synthesis to templates with interconnected pores to obtain free-standing spiky nickel nanotube networks, demonstrating its ability to homogeneously coat substrates with extended inner surfaces and to operate in nanoscale confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA