Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(30): 8054-8060, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538829

RESUMO

Targeted α-particle therapy (TAT) is an attractive alternative to conventional therapy for cancer treatment. Among the available radionuclides considered for TAT, astatine-211 (211At) attached to a cancer-targeting molecule appears very promising. Previously, we demonstrated that aryl azide derivatives could react selectively with the endogenous acrolein generated by cancer cells to give a diazo compound, which subsequently forms a covalent bond with the organelle of cancer cells in vivo. Herein, we synthesized 211At-radiolabeled 2,6-diisopropylphenyl azide (ADIPA), an α-emitting molecule that can selectively target the acrolein of cancer cells, and investigated its antitumor effect. Our results demonstrate that a single intratumor or intravenous administration of this simple α-emitting molecule to the A549 (human lung cancer) cell-bearing xenograft mouse model, at a low dose (70 kBq), could suppress tumor growth without inducing adverse effects. Furthermore, because acrolein is generally overproduced by most cancer cells, we believe ADIPA is a simple TAT compound that deserves further investigation for application in animal models and humans with various cancer types and stages.

2.
Adv Carbohydr Chem Biochem ; 82: 11-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36470648

RESUMO

The concept of "therapeutic in vivo synthetic chemistry" refers to chemical synthesis in living systems using new-to-nature reactions for the treatment or diagnosis of diseases. This review summarizes our development of therapeutic in vivo synthetic chemistry using glycan-modified human serum albumin (glycoHSA) and utilizing the selective glycan-targeting and metal protective effects of metal catalysts. The four artificial metalloenzymes with glycoHSA provided good cancer treatment results based on on-site drug synthesis and selective cell-tagging strategies. Thus, we propose that therapeutic in vivo synthetic chemistry using glycoHSA as a new modality of therapy or diagnosis is applicable to a wide range of diseases.


Assuntos
Metaloproteínas , Humanos , Catálise , Metais , Albumina Sérica Humana
3.
Bioorg Med Chem ; 73: 117005, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150343

RESUMO

Recently, the development of abiotic metal-mediated drug delivery has been significant growth in the fields of anticancer approach and biomedical application. However, the intrinsic toxicity of abiotic metal catalysts makes in vivo use difficult. Our group developed a system of cancer-targeting albumin-based artificial metalloenyzmes (ArMs) capable of performing localized drug synthesis and selective tagging therapy in vivo for cancer therapy. The toxicity of the system at higher concentrations was investigated in vitro and in vivo in the study to demonstrate its safety for potential application in clinical trials. In cell-based experiments, the study revealed that the cytotoxicity of metal catalysts anchored within the binding cavity of the cancer-targeting ArMs could be significantly reduced compared to free-in-solution metal catalysts. Moreover, the in vivo data demonstrated that the cancer-targeting ArMs did not cause considerable damage in organs or change in the hematological parameters in a single-dose (160 mg/Kg) toxicity study in rats. Therefore, the system is safe, highlighting that it could be used in clinical trials for cancer treatment.


Assuntos
Metaloproteínas , Neoplasias , Albuminas , Animais , Catálise , Metaloproteínas/metabolismo , Neoplasias/tratamento farmacológico , Ratos
4.
Chem Sci ; 12(37): 12266-12273, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34603656

RESUMO

Selective cell tagging (SeCT) therapy is a strategy for labeling a targeted cell with certain chemical moieties via a catalytic chemical transformation in order to elicit a therapeutic effect. Herein, we report a cancer therapy based on targeted cell surface tagging with proapoptotic peptides (Ac-GGKLFG-X; X = reactive group) that induce apoptosis when attached to the cell surface. Using either Au-catalyzed amidation or Ru-catalyzed alkylation, these proapoptotic peptides showed excellent therapeutic effects both in vitro and in vivo. In particular, co-treatment with proapoptotic peptide and the carrier-Ru complex significantly and synergistically inhibited tumor growth and prolonged survival rate of tumor-bearing mice after only a single injection. This is the first report of Ru catalyst application in vivo, and this approach could be used in SeCT for cancer therapy.

5.
RSC Med Chem ; 12(3): 406-409, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046623

RESUMO

Antibody-recruiting molecules (ARMs) are bispecific molecules composed of an antibody-binding motif and a target-binding motif that redirect endogenous antibodies to target cells to elicit immune responses. To enhance the translational potential of ARMs, it is crucial to design antibody/target-binding motifs that have strong affinity and are easy to synthesize. Here, we synthesized a novel Fc-binding ARM (Fc-ARM) that targets folate receptor (FR)-positive cancer cells, Reo-3, using a recently developed monocyclic peptide 15-Lys8Leu, which binds strongly to the Fc region of an antibody. Reo-3 bound to the Fc region of the antibody with a K d of 5.8 nM, and recruited a clinically used antibody mixture to attack FR-positive IGROV-1 cells as efficiently as Fc-ARM2, in which a bicyclic Fc-binding peptide was used. These results indicate that 15-Lys8Leu, which can be synthesized readily, is suitable for various applications including the development of Fc-ARMs.

6.
ChemMedChem ; 16(11): 1813-1820, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594831

RESUMO

Immunoglobulin G (IgG)-binding peptides such as 15-IgBP are convenient tools for the site-specific modification of antibodies and the preparation of homogeneous antibody-drug conjugates. A peptide such as 15-IgBP can be selectively crosslinked to the fragment crystallizable region of human IgG in an affinity-dependent manner via the ϵ-amino group of Lys8. Previously, we found that the peptide 15-Lys8Leu has a high affinity (Kd =8.19 nM) due to the presence of the γ-dimethyl group in Leu8. The primary amino group required for the crosslinking to the antibodies has, however, been lost. Here, we report the design and synthesis of a novel unnatural amino acid, 4-(2-aminoethylcarbamoyl)leucine (Aecl), which possesses both the γ-dimethyl fragment and a primary amino group. A peptide containing Aecl8 (15-Lys8Aecl) was synthesized and showed a binding affinity ten times higher (Kd =24.3 nM) than that of 15-IgBP (Kd =267 nM). Fluorescein isothiocyanate (FITC)-labeled 15-Lys8Aecl with an N-hydroxy succinimide ester at the side chain of Aecl8 (FITC-15-Lys8Aecl(OSu)) successfully labeled an antibody (trastuzumab, Herceptin® ) with the fluorophore. This peptide scaffold has both strong binding affinity and crosslinking capability, and could be a useful tool for the selective chemical modification of antibodies with molecules of interest such as drugs.


Assuntos
Desenvolvimento de Medicamentos , Imunoconjugados/química , Imunoglobulina G/química , Peptídeos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Estrutura Molecular
7.
Chem Sci ; 12(15): 5438-5449, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35340932

RESUMO

Cytotoxic anticancer drugs used in chemotherapy are often antiproliferative agents that preferentially kill rapidly growing cancer cells. Their mechanism relies mainly on the enhanced proliferation rate of cancer cells and is not genuinely selective for cancer cells. Therefore, these drugs can also significantly affect healthy cells. Prodrug therapy provides an alternative approach using a less cytotoxic form of anticancer drug. It involves the synthesis of inactive drug derivatives which are converted to an active form inside the body and, preferably, only at the site of cancerous tissues, thereby reducing adverse drug reaction (ADR) events. Herein, we demonstrate a prodrug activation strategy by utilizing the reaction between aryl azide and endogenous acrolein. Since acrolein is generally overproduced by most cancer cells, we anticipate our strategy as a starting point for further applications in mouse models with various cancers. Furthermore, cancer drugs that have had therapeutic index challenges might be reconsidered for application by utilizing our strategy.

8.
Bioconjug Chem ; 27(7): 1606-13, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27304609

RESUMO

Although several approaches for making antibody-drug conjugates (ADC) have been developed, it has yet to be reported that an antibody binding peptide such as Z33 from protein A is utilized as the pivotal unit to generate the noncovalent-type ADC (NC-ADC). Herein we aim to establish a novel probe for NC-ADC by synthesizing the Z33-conjugated antitumor agent, plinabulin. Due to the different solubility of two components, including hydrophobic plinabulin and hydrophilic Z33, an innovative method with a solid-supported disulfide coupling reagent is required for the synthesis of the target compounds with prominent efficiency (29% isolated yield). We demonstrate that the synthesized hybrid exhibits a binding affinity against the anti-HER2 antibody (Herceptin) and the anti-CD71 antibody (6E1) (Kd = 46.6 ± 0.5 nM and 4.5 ± 0.56 µM, respectively) in the surface plasmon resonance (SPR) assay. In the cell-based assays, the hybrid provides a significant cytotoxicity in the presence of Herceptin against HER2 overexpressing SKBR-3 cells, but not against HER2 low-expressing MCF-7 cells. Further, it is noteworthy that the hybrid in combination with Herceptin induces cytotoxicity against Herceptin-resistant SKBR-3 (SKBR-3HR) cells. Similar results are obtained with the 6E1 antibody, suggesting that the synthesized hybrid can be widely applicable for NC-ADC using the antibody of interest. In summary, a series of evidence presented here strongly indicate that NC-ADCs have high potential for the next generation of antitumor agents.


Assuntos
Antineoplásicos/metabolismo , Dicetopiperazinas/metabolismo , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Pró-Fármacos/metabolismo , Humanos , Imunoconjugados/química , Células MCF-7 , Solubilidade , Água/química
9.
ACS Med Chem Lett ; 5(10): 1094-8, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25313318

RESUMO

A new benzophenone-diketopiperazine-type potent antimicrotubule agent was developed by modifying the structure of the clinical candidate plinabulin (1). Although the right-hand imidazole ring with a branched alkyl chain at the 5-position in 1 was critical for the potency of the antimicrotubule activity, we successfully substituted this moiety with a simpler 2-pyridyl structure by converting the left-hand ring from a phenyl to a benzophenone structure without decreasing the potency. The resultant compound 6b (KPU-300) exhibited a potent cytotoxicity, with an IC50 value of 7.0 nM against HT-29 cells, by strongly binding to tubulin (K d = 1.3 µM) and inducing microtubule depolymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA