Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 26(3): 562-574, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683457

RESUMO

The potential functional role(s) of heat shock protein 70 (Hsp70) in the brine shrimp, Artemia franciscana, a crucial crustacean species for aquaculture and stress response studies, was investigated in this study. Though we have previously reported that Hsp70 knockdown may have little or no impact on Artemia development, the gestational survival and number of offspring released by adult females were impaired by obscuring Hsp70 synthesis. Transcriptomic analysis revealed that several cuticle and chitin synthetic genes were downregulated, and carbohydrate metabolic genes were differentially expressed in Hsp70-knockdown individuals. A more comprehensive microscopic examination performed in this study revealed exoskeleton structural destruction and abnormal eye lenses featured in Hsp70-deficient adult females 48 h after Hsp70 dsRNA injection. Cysts produced by these Hsp70-deficient broods, instead, had a defective shell and were smaller in size, whereas nauplii had shorter first antennae and a rougher body epicuticle surface. Changes in carbohydrate metabolism caused by Hsp70 knockdown affected glycogen levels in adult Artemia females, as well as trehalose in cysts released from these broods, indicating that Hsp70 may play a role in energy storage preservation. Outcomes from this work provided novel insights into the roles of Hsp70 in Artemia reproduction performance, cyst formation, and exoskeleton structure preservation. The findings also support our previous observation that Hsp70 knockdown reduced Artemia nauplius tolerance to bacterial pathogens, which could be explained by the fact that loss of Hsp70 downregulated several Toll receptor genes (NT1 and Spaetzle) and reduced the integrity of the exoskeleton, allowing pathogens to enter and cause infection, ultimately resulting in mortality.


Assuntos
Artemia , Proteínas de Choque Térmico HSP70 , Reprodução , Animais , Artemia/genética , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Reprodução/genética , Técnicas de Silenciamento de Genes , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Exoesqueleto/metabolismo , Metabolismo dos Carboidratos/genética , Embrião não Mamífero/metabolismo
2.
J Adv Pharm Technol Res ; 14(3): 220-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692002

RESUMO

Besides adenovirus, pneumonia can also be caused by bacteria. One of the most common bacteria causing the pneumonia is Klebsiella pneumoniae. Currently, treatment by antibiotics has been widely used. Nevertheless, the increasing failure of existing antibiotics because of antibiotic resistance resulted by bacterial pathogens has become a serious problem to human health. Hence, there is a need for a new antibacterial potential agent against K. pneumoniae as an alternative treatment to the pneumonia to prevent the risk of a severe pneumonia for both healthy people and those already infected with the pneumonia. This study, therefore, investigated the antibacterial activity of some selected plants (Pandanus tectorius, Nypa fruticans, Sonneratia alba, Phaleria macrocarpa, Hibiscus tiliaceus, and Pongamia pinnata) against K. pneumoniae. In this study, samples were extracted successively by cold maceration using hexane and methanol. Antibacterial activity was determined by well and disc diffusion methods. Each fraction was prepared by two-fold dilutions from 20 mg/mL to 0.156 mg/mL. All data were analyzed in triplicate replication and presented as mean values ± standard deviation. Results showed that all methanol fractions of selected plants had antibacterial activity against K. pneumoniae, and well-diffusion method showed better antibacterial results compared to the agar well-diffusion method. The strongest activity was obtained by methanol fraction of S. alba leaf, followed by P. pinnata leaf, Nypa fruticans bark, H. tiliaceus leaf, P. macrocarpa leaf, and P. tectorius leaf with the minimum inhibitory concentrations (MICs) value between 0.625 and 5.0 mg/mL. Phytochemical screening revealed that all methanol fractions were rich in flavonoid content, which could have contributed to their antibacterial activity.

3.
J Adv Pharm Technol Res ; 13(4): 243-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568055

RESUMO

Analysis of cancer biomarkers has enormous promise for advancing our molecular understanding of illness and facilitating more precise and timely diagnosis and follow-up care. MicroRNA, exosomes, ctDNA, CTCs, and proteins are only some of the circulating biomarkers that can be detected by liquid biopsy instead of the more intrusive and time-consuming process of doing a tissue biopsy. As the cancer diagnosis bio-markers reveal ultra-low levels in the early stages of the disease, highly sensitive approaches are urgently required. Researchers have taken an interest in a optical biosensor for detecting cancer biomarkers as a potential tool for early disease diagnosis. These techniques have the potential to aid in the development of effective treatments, ultimately leading to a higher rate of patient survival. This review briefly discuss the i) understanding of cancer and biomarkers for early diagonosis purpose ii) Molecular methods and ii) biosensor-based diagnostics. The reseach primary focus on advancement in biosensor design using various concepts ie., Electrochemical, Chemiluminescence and Colorimetric, Surface plasmons (SP), Surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), Fluorescence, Fiber-based sensors, Terahertz based biosensors, and Surface enhanced Raman spectroscopy (SERS). As a result of the local electric field amplification around plasmonic (usually gold and silver) nanostructures, surface-enhanced Raman spectroscopy (SERS) has emerged as a rapid, selective, and sensitive alternative to conventional laboratory analytical methods, making significant strides in a number of biosensing applications but still under developing stage to be used as diagnostic tool in clinical research.

4.
Methods Mol Biol ; 2543: 191-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36087269

RESUMO

Cancer is an uncontrolled growth of normal cells due to unchecked regulatory mechanisms working inside the rapidly dividing cells. In this complex cancer disease treatment, various strategies are utilized to get rid of cancer cells effectively. The different methods combine approaches used to treat cancer, such as radiotherapy, surgery, and chemotherapy. Chemotherapy is among the most effective ways, along with radiotherapy and surgical removal of cancer tissue. Effective chemotherapy based on modification of conventional drugs along with various molecular therapeutic targets, which involve different inhibitors that work in a specific manner in inhibiting particular events activated in cancer cells-the understanding of molecular signaling pathways holds key in the development of targeted therapeutics. After the fundamental signaling pathway studies, a single signaling pathway targeting approach or multiple targeting could display remarkable results in cancer therapeutics. The signal approach includes the signal pathway target. However, a double targeted pathway could effectively aid in inhibiting cell growth or metastasis either due to triggering natural suicidal mechanism (apoptosis) activation. The particular environment of cells regulates cell growth and differentiation. Various proteins in the extracellular matrix (ECM) regulate the process of cancer initiation or progression. The ECM collagens, elastins proteins, fibronectins, and laminins might reduce the effectiveness of treatment therapy, reflecting them as an essential target. Any dysregulation in the composition of ECM reflects the regulatory ineffectiveness in a particular area. These have an association with poor prognosis, cell propagation, and metastasis, along drug resistance.Regulation in physiological processes associated with developmental process and maintaining the homeostasis. The pathogenesis of cancer might be connected to dysregulation in cell death programs, including autophagy, necrosis, and the most desirable cell death mechanism called apoptosis: programmed cell death, the highly regulatory mechanism of natural cell death involved in tissue development. The apoptosis involves characteristic feather of cell death which includes specific morphological change along with biochemical alteration. It includes tightly regulated irreversible events, i.e., phosphatidylserine externalization and DNA fragmentation, mainly via the intrinsic and extrinsic pathways. Targeting apoptosis in the development of therapeutics could be the ultimate process in treating cancer via chemotherapy. During apoptosis, cell death occurs without causing much damage or inflammation in neighboring cells. Various pro-apoptosis and anti-apoptosis proteins involved in the regulation of apoptosis could act as a remarkable target. The apoptosis inactivation is the critical dysregulatory process in the majority of cancer types. There is an increase in research development regarding apoptosis-targeted therapeutics. A understanding of apoptotic signaling pathways, a fundamental knowledge, aids in developing particular inhibitors for anti-apoptotic and activator of pro-apoptotic proteins.In both apoptosis pathways (extrinsic and intrinsic), pro-apoptotic and anti-apoptotic proteins act as potential regulators in cell division and growth. The pro-apoptotic proteins Bax trigger the activation of the intrinsic pathway, an excellent target for developing therapeutics, and are currently in clinical trials. Similarly, the inhibitor of the anti-apoptotic proteins is also on track in the drug development process. The considerable importance of apoptosis-based anticancer drugs is also due to improving the drug sensitivity via reversing the resistive mechanisms in cancer cells. The dysregulatory or inactivated apoptosis mechanism involve Bcl-2 family proteins which include both pro-apoptotic members downregulation and anti-apoptotic upregulation, various inhibitors of apoptosis as inhibitory proteins (IAPs), cell cycle dysregulation, dysregulatory repair system, cell progression pathway activation of NF-κB, tumor suppressor (p53) regulation, and death receptors (DRs) of the extrinsic pathway.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose , Humanos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Adv Pharm Bull ; 11(4): 580-594, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34888205

RESUMO

Cancer is a complex multifactorial process, unchecked and abrupt division, and cell growth-conventional chemotherapy, along with radiotherapy, is used to treat breast cancer. Due to reduce efficacy and less survival rate, there is a particular need for the discovery of new active anticancer agents. Natural resources such as terrestrial/marine plants or organisms are a promising source for the generation of new therapeutics with improving efficacy. The screening of natural plant extracts and fractions, isolations of phytochemicals, and mechanistic study of those potential compounds play a remarkable role in the development of new therapeutic drugs with increased efficacy. Cancer is a multistage disease with complex signaling cascades. The initial study of screening whole extracts or fractions and later the isolation of secondary compounds and their mechanism of action study gives a clue of potential therapeutic agents for future drug development. The phytochemicals present in extracts/fractions produce remarkable effects due to synergistically targeting multiple signals. In this review, the molecular targets of extracts/ fractions and isolated compounds highlighted. The therapeutic agent's mechanistic targets in drug development focused involves; i) Induction of Apoptosis, ii) modulating cell cycle arrest, iii) Inhibition or suppression of invasion and metastasis and iv) various other pro-survival signaling pathways. The phytochemicals and their modified analogs identified as future potential candidates for anticancer chemotherapy.

6.
J Inorg Biochem ; 224: 111590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507110

RESUMO

The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Paládio/química , Compostos de Piridínio/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X/métodos , DNA/química , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
7.
Adv Pharm Bull ; 11(3): 426-438, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34513617

RESUMO

Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.

8.
Asian Pac J Cancer Prev ; 22(S1): 17-24, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576208

RESUMO

OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line. METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method. RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis. CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Meliaceae/química , Extratos Vegetais/farmacologia , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células Tumorais Cultivadas
9.
Mol Biol Rep ; 47(12): 9595-9607, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33259010

RESUMO

Mitochondrial dysfunction plays a crucial role in the central pathogenesis of insulin resistance and type 2 diabetes mellitus. Macrophages play important roles in the pathogenesis of insulin resistance. Lauric acid is a 12-carbon medium chain fatty acid (MCFA) found abundantly in coconut oil or palm kernel oil and it comes with multiple beneficial effects. This research objective was to uncover the effects of the lauric acid on glucose uptake, mitochondrial function and mitochondrial biogenesis in insulin-resistant macrophages. THP-1 monocytes were differentiated into macrophages and induce insulin resistance, before they were treated with increasing doses of lauric acid (5 µM, 10 µM, 20 µM, and 50 µM). Glucose uptake assay, cellular ROS and ATP production assays, mitochondrial content and membrane potential assay were carried out to analyse the effects of lauric acid on insulin resistance and mitochondrial biogenesis in the macrophages. Quantitative RT-PCR (qRT-PCR) and western blot analysis were also performed to determine the expression of the key regulators. Insulin-resistant macrophages showed lower glucose uptake, GLUT-1 and GLUT-3 expression, and increased hallmarks of mitochondrial dysfunction. Interestingly, lauric acid treatment upregulated glucose uptake, GLUT-1 and GLUT-3 expressions. The treatment also restored the mitochondrial biogenesis in the insulin-resistant macrophages by improving ATP production, oxygen consumption, mitochondrial content and potential, while it promoted the expression of mitochondrial biogenesis regulator genes such as TFAM, PGC-1α and PPAR-γ. We show here that lauric acid has the potential to improve insulin sensitivity and mitochondrial dysregulation in insulin-resistant macrophages.


Assuntos
Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Ácidos Láuricos/farmacologia , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Humanos , Resistência à Insulina , Macrófagos/citologia , Macrófagos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Adv Pharm Technol Res ; 11(3): 101-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102192

RESUMO

Cancer is a complex multifactorial disease and leading causes of death worldwide. Despite the development of many anticancer drugs, there is a reduced survival rate due to severe side effects. The nontargeted approach of convention drugs is one of the leading players in context to toxicity. Hyaluronan is a versatile bio-polymer and ligand of the receptor (CD44) on cancer cells. The MCF-7 and HT-29 cancer cell lines treated with hyaluronic acid-paclitaxel (HA-PTX) showed the distinguishing morphological features of apoptosis. Flow cytometric analysis showed that HA-PTX induces apoptosis as a significant mode of cell death. The activation level of tumor suppressor protein (p53) increased after PTX treatment in MCF-7, but no changes observed in HT-29 might be due to hereditary mutations. The lack of suppression in AKT and Rho A protein suggest the use of possible inhibitors in future studies which might could play a role in increasing the sensitivity of drug towards mutated cells line and reducing the possibilities for cancer cell survival, migration, and metastasis.

11.
Biomed Mater ; 15(6): 065004, 2020 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-32442994

RESUMO

Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 µg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 µg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.


Assuntos
Apoptose , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Nanomedicina/métodos , Materiais Biocompatíveis , Carbono/química , Adesão Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Portadores de Fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Solubilidade , Gencitabina
12.
Mol Cell Endocrinol ; 505: 110702, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927097

RESUMO

Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , PPAR alfa/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Transcrição Gênica , Sítios de Ligação , Células Hep G2 , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Elementos de Resposta/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
13.
Asian Pac J Cancer Prev ; 20(12): 3555-3562, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870094

RESUMO

OBJECTIVE: Breast cancer is the most frequently diagnosed cancer worldwide. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the extract and fractions of Vitex rotundifolia (leaves) in breast cancer cell line, T-47D. METHODS: The cytotoxicity activity was measured using MTS assay. The mode of cell death was analysed by early (phosphatidylserine externalization) and late apoptosis (DNA fragmentation). The caspases 8, 9, 3/7 and apoptotic proteins bax, bcl-2 study were done by western blot and ELISA method. RESULTS: The methanol extract was found to inhibit 50% growth of T-47D cells at the concentration of 79.43µg/ml respectively after 72hr. From seven fractions, fraction F1, F2 and F3 produced cytotoxicity effects in T-47D cell line with IC50 (72hr) < 30µg/ml. The results obtained by Annexin V/PI apoptosis detection assay and TUNEL assay suggest that active fractions of  Vitex rotundifolia induced early and late apoptosis (DNA fragmentation) in T-47D cell line. Moreover, western blot analysis and Caspase GloTM luminescent assay demonstrated that fractions F2 and F3 triggered apoptotic cell death via activation of caspases -8, -9 and -3/7 and up-regulation of  Bax and down-regulation of Bcl-2 protein.  Furthermore, chemical profiling confirms the presence of potential metabolites (vitexicarpin) in fractions of Vitex rotundifolia. CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in fractions of Vitex rotundifolia as future cancer therapeutic agent for the treatment of breast cancer.
.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Extratos Celulares/farmacologia , Extratos Vegetais/farmacologia , Vitex/química , Neoplasias da Mama/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA , Feminino , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
14.
Dalton Trans ; 48(41): 15408-15418, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31393494

RESUMO

The two cationic palladium(ii) complexes, [Pd(Len)2][OTf]2 (4) and [Pd(Lphen)2][OTf]2 (5), were synthesized by treatment of bis(benzonitrile)dichloropalladium(ii) with [H2Len][OTf]2 (2) or [H2Lphen][OTf]2 (3), respectively, in the presence of a weak base. The pro-ligands 2 and 3 were synthesized by melt reactions between N-methyl-4-chloropyridinium triflate (1) and the amines ethylenediamine or phenylenediamine, respectively. The water-soluble compounds 2-5 were fully characterized, including by single-crystal X-ray crystal structure determinations for 2-4. UV-Vis and fluorescence spectroscopy were used to study the binding interactions of 2-5 with CT-DNA. The spectroscopic data suggested the presence of intercalative and groove binding modes and this was supported by molecular docking studies. The in vitro cytotoxicity studies (IC50 values) showed that the human breast cancer cell lines MCF-7 and T47D were more sensitive towards 3, 4 and 5 than cisplatin. The cytotoxicity of the new compounds decreased in the order 5 > 4 > 3 > 2. Furthermore, the annexin V-FITC staining method strongly suggested the presence of phosphatidylserine (PS) on the outer membrane of the treated cells, which is a hallmark of apoptosis.

15.
Toxicol Appl Pharmacol ; 300: 55-69, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27049118

RESUMO

14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Diterpenos/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , Fator de Transcrição CHOP/biossíntese , Autofagia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
16.
Int J Toxicol ; 34(5): 454-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26268769

RESUMO

A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.


Assuntos
Bioensaio , Citocromo P-450 CYP3A/biossíntese , Indutores das Enzimas do Citocromo P-450/farmacologia , Citocromo P-450 CYP3A/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Laboratórios , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas
17.
J Ethnopharmacol ; 162: 55-60, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25554642

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The juice of the entire fresh herb and infusion of dried sample of Murdannia bracteata are consumed to treat liver cancer and diabetes in Malaysia. However, no scientific evidence of these bioactivities has been reported. MATERIALS AND METHODS: To verify the therapeutic potentials of sequential extracts and infusion of this plant by determining its cytotoxicity against human liver carcinoma HepG2 cells and α-glucosidase inhibitory activity. The cytotoxic activities of the extracts against HepG2 were determined using a methylene blue assay, and an α-glucosidase inhibitory assay was used to assess anti-diabetic activity. The molecular basis of the anti-hepatocellular carcinoma activity of the most active extract was determined using RT-PCR. Chemical profiling of the most active extract was performed using GC-MS and UPLC analyses. RESULTS: The results obtained from the cytotoxic screening revealed the dose-dependent growth inhibition of the HepG2 cells by only the hexane extract, with an EC50 value of 37.17±1.00 µg/ml. The HepG2 cell death was found to be apoptotic in nature and based on the significant biphasic induction of caspase-3, suggesting that the extract inhibited cell growth through a caspase-3-dependent pathway. The hexane extract also displayed α-glucosidase inhibitory activity, with an EC50 of 117.04±2.34 µg/ml. GC-MS analysis revealed that α-tocopherol was the major volatile compound in the hexane extract, and two phenolics (apigenin and caffeic acid derivatives) were detected using UPLC. CONCLUSIONS: Based on various published reports, it could be suggested that α-tocopherol and apigenin derivatives might be involved in the apoptosis-based cytotoxicity of the active extract of this plant against HepG2 carcinoma cells. The effects of this plant in the treatment of diabetes can be related to the presence of α-glucosidase inhibitors, such as the caffeic acid derivative identified in the active extract.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Magnoliopsida , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Caspase 3/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , alfa-Glucosidases/metabolismo
18.
Mol Cell Biochem ; 388(1-2): 25-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24242046

RESUMO

Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression.


Assuntos
Hepatócitos/patologia , Interleucina-6/farmacologia , PPAR alfa/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Reação de Fase Aguda/genética , Androstadienos/farmacologia , Sítios de Ligação/genética , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Interleucina-6/biossíntese , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , PPAR alfa/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA Mensageiro/biossíntese , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT3/biossíntese , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transcrição Gênica , Tirfostinas/farmacologia , Wortmanina
19.
J Ethnopharmacol ; 150(1): 382-8, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24051023

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Physalin F (a secosteroid derivative), is well recognized as a potent anticancer compound from Physalis minima L., a plant that is traditionally used to treat cancer. However, the exact molecular anticancer mechanism remains to be elucidated. AIM OF THE STUDY: We have recently reported the apoptosis-based cytotoxic effect of the chloroform extract of this plant. Here, we investigated the cytotoxicity and possible cell death mechanism elicited by the active constituent, physalin F on human breast T-47D carcinoma. MATERIALS AND METHODS: Cytotoxic-guided fractionation of the chloroform extract of Physalis minima has led to the isolation of physalin F. The cytotoxicity activity was assayed using MTS assay. The effect of the compound to induce apoptosis was determined by biochemical and morphological observations through DeadEnd Colorimetric and annexin V assays, respectively, and RT-PCR analysis of mRNA expression of the apoptotic-associated genes. RESULTS: Cytotoxicity screening of physalin F displayed a remarkable dose-dependent inhibitory effect on T-47D cells with lower EC50 value (3.60 µg/ml) than the crude extract. mRNA expression analysis revealed the co-regulation of c-myc- and caspase-3-apoptotic genes in the treated cells with the peak expression at 9 and 12h of treatment, respectively. This apoptotic mechanism is reconfirmed by DNA fragmentation and phosphatidylserine externalization. CONCLUSION: These findings indicate that physalin F may potentially act as a chemopreventive and/or chemotherapeutic agent by triggering apoptosis mechanism via the activation of caspase-3 and c-myc pathways in T-47D cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Physalis , Secoesteroides/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Caspase 3/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Secoesteroides/isolamento & purificação
20.
Cell Biochem Biophys ; 66(3): 567-87, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23300026

RESUMO

Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA