Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
2.
Dermatol Surg ; 46(1): 86-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356435

RESUMO

BACKGROUND: Microneedling is a popular, minimally invasive skin rejuvenation modality for acne scarring. Recent reports have evaluated the efficacy and safety of microneedling monotherapy and combination treatment for scarring. OBJECTIVE: This review aims to systematically analyze the current literature on microneedling techniques used for acne scarring. METHODS: A PubMed search (2009-current) was used to identify literature on microneedling treatment for acne. All randomized and nonrandomized clinical trials, case cohorts, case reports, and case series were included with the exception of 2 studies, which were excluded due to unavailability. RESULTS: All 33 articles evaluated showed improvement of acne scar appearance after microneedling treatment. Evidence was inconsistent when comparing microneedling monotherapy to dual therapy or to fractional laser treatment. CONCLUSION: Microneedling improves acne scarring, and further studies are needed to compare microneedling with other minimally invasive treatments.


Assuntos
Acne Vulgar/complicações , Acne Vulgar/terapia , Cicatriz/etiologia , Cicatriz/terapia , Técnicas Cosméticas , Humanos , Agulhas , Resultado do Tratamento
3.
Vet Pathol ; 55(1): 144-158, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254472

RESUMO

Severe equine asthma, formerly recurrent airway obstruction (RAO), is the horse counterpart of human asthma, affecting horses maintained indoors in continental climates. Equine pasture asthma, formerly summer pasture RAO, is clinically similar but affects grazing horses during hot, humid conditions in the southeastern United States and United Kingdom. To advance translational relevance of equine pasture asthma to human asthma, histologic features of airway remodeling in human asthma were scored in lung lobes from 15 pasture asthma-affected and 9 control horses of mixed breeds. All noncartilaginous airways were scored using a standardized grading rubric (0-3) in hematoxylin and eosin (HE) and Movat's pentachrome-stained sections; 15 airways were chosen randomly from each lobe for analysis. Logistic regression identified disease, age, and lobe effects on probability of histologic outcomes. Airway smooth muscle (odds ratio [OR] = 2.5, P < .001), goblet cell hyperplasia/metaplasia (OR = 37.6, P < .0001), peribronchiolar elastic system fibers (OR = 4.2, P < .001), peribronchiolar fibrosis (OR = 3.8, P = .01), airway occlusion by mucus/inflammation (OR = 4.2, P = .04), and airway adventitial inflammation (OR = 3.0, P = .01) were significantly greater in diseased airways. A novel complex tissue disorganization, designated terminal bronchiolar remodeling, was overrepresented in diseased airways (OR = 3.7, P < .0001). Distribution of terminal bronchiolar remodeling corresponded to putative sites of air trapping in human asthma, at secondary pulmonary lobules. Age (>15 years) was an independent risk factor for increased peribronchiolar fibrosis, elastic system fibers, and terminal bronchiolar remodeling. Remodeling differed significantly between lung lobes, congruent with nonhomogeneous remodeling in human asthma. Equine pasture asthma recapitulates airway remodeling in human asthma in a manner not achieved in induced animal asthma models, endorsing its translational relevance for human asthma investigation.


Assuntos
Remodelação das Vias Aéreas , Asma/veterinária , Animais , Asma/patologia , Feminino , Doenças dos Cavalos , Cavalos , Humanos , Masculino
4.
Cell Rep ; 19(11): 2177-2184, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614705

RESUMO

The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.


Assuntos
Melaninas/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Humanos , Melaninas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA