Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101198, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534548

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills various physiological roles that are unrelated to its glycolytic function. However, to date, the nonglycolytic function of GAPDH in trypanosomal parasites is absent from the literature. Exosomes secreted from Leishmania, like entire parasites, were found to have a significant impact on macrophage cell signaling and function, indicating cross talk with the host immune system. In this study, we demonstrate that the Leishmania GAPDH (LmGAPDH) protein is highly enriched within the extracellular vesicles (EVs) secreted during infection. To understand the function of LmGAPDH in EVs, we generated control, overexpressed, half-knockout (HKO), and complement cell lines. HKO cells displayed lower virulence compared with control cells when macrophages and BALB/c mice were infected with them, implying a crucial role for LmGAPDH in Leishmania infection and disease progression. Furthermore, upon infection of macrophages with HKO mutant Leishmania and its EVs, despite no differences in TNFA mRNA expression, there was a considerable increase in TNF-α protein expression compared with control, overexpressed, and complement parasites as determined by ELISA, RT-PCR, and immunoblot data. In vitro protein translation studies suggest that LmGAPDH-mediated TNF-α suppression occurs in a concentration-dependent manner. Moreover, mRNA binding assays also verified that LmGAPDH binds to the AU-rich 3'-UTR region of TNFA mRNA, limiting its production. Together, these findings confirmed that the LmGAPDH contained in EVs inhibits TNF-α expression in macrophages during infection via posttranscriptional repression.


Assuntos
Vesículas Extracelulares/enzimologia , Regulação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Leishmania major/enzimologia , Macrófagos/metabolismo , Proteínas de Protozoários/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Vesículas Extracelulares/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/imunologia , Leishmania major/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Fator de Necrose Tumoral alfa/imunologia
2.
Biochem J ; 476(8): 1303-1321, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988012

RESUMO

Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel ß sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.


Assuntos
Autofagossomos/imunologia , Leishmania major , Macrófagos , Modelos Moleculares , Fosfoglicerato Quinase , Proteínas de Protozoários , Animais , Leishmania major/genética , Leishmania major/imunologia , Leishmania major/patogenicidade , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/deficiência , Fosfoglicerato Quinase/imunologia , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
3.
Biochem Biophys Res Commun ; 503(1): 371-377, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29906460

RESUMO

Leishmania promastigotes have the ability to synthesize essential polyunsaturated fatty acids de novo and can grow in lipid free media. Recently, we have shown that NAD(P)H cytochrome b5 oxidoreductase (Ncb5or) enzyme in Leishmania acts as the redox partner for Δ12 fatty acid desaturase, which catalyses the conversion of oleate to linoleate. So far, the exact role of Leishmania derived linoleate synthesis is still incomplete in the literature. The viability assay by flow cytometry as well as microscopic studies suggests that linoleate is an absolute requirement for Leishmania promastigote survival in delipidated media. Western blot analysis suggested that infection with log phase linoleate deficient mutant (KO) results in increased level of NF-κBp65, IκB and IKKß phosphorylation in RAW264.7 cells. Similarly, the log phase KO infected RAW264.7 cells show dramatic increment of COX-2 expression and TNF-α secretion, compared to control or Ncb5or complement (CM) cell lines. The activation of inflammatory signaling pathways by KO mutant is significantly reduced when the RAW264.7 cells are pre-treated with BSA bound linoleate. Together, these findings confirmed that the leishmanial linoleate inhibits both COX-2 and TNF-α expression in macrophage via the inactivation of NF-κB signaling pathway. The stationary phase of KO promastigotes shows avirulence after infection in macrophages as well as inoculation into BALB/c mice; whereas CM cell lines show virulence. Collectively, these data provide strong evidence that de novo linoleate synthesis in Leishmania is an essential for parasite survival at extracellular promastigote stage as well as intracellular amastigote stage.


Assuntos
Citocromo-B(5) Redutase/genética , Deleção de Genes , Leishmania major/genética , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Proteínas de Protozoários/genética , Animais , Ciclo-Oxigenase 2/genética , Feminino , Regulação da Expressão Gênica , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Ácido Linoleico/genética , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Virulência
4.
PLoS One ; 10(3): e0119577, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25761062

RESUMO

BACKGROUND: Reactive oxygen species (ROS) are largely considered to be pathogenic to normal endothelial function in disease states such as sepsis. We hypothesized that Angiopoietin-1 (Angpt-1), an endogenous agonist of the endothelial-specific receptor, Tie-2, promotes barrier defense by activating NADPH oxidase (NOX) signaling. METHODS AND FINDINGS: Using primary human microvascular endothelial cells (HMVECs), we found that Angpt-1 stimulation induces phosphorylation of p47phox and a brief oxidative burst that is lost when chemical inhibitors of NOX activity or siRNA against the NOX component p47phox were applied. As a result, there was attenuated ROS activity, disrupted junctional contacts, enhanced actin stress fiber accumulation, and induced gap formation between confluent HMVECs. All of these changes were associated with weakened barrier function. The ability of Angpt-1 to prevent identical changes induced by inflammatory permeability mediators, thrombin and lipopolysaccharides (LPS), was abrogated by p47phox knockdown. P47phox was required for Angpt-1 to activate Rac1 and inhibit mediator-induced activation of the small GTPase RhoA. Finally, Angpt-1 gene transfer prevented vascular leakage in wildtype mice exposed to systemically administered LPS, but not in p47phox knock out (p47-/-) littermates. CONCLUSIONS: These results suggest an essential role for NOX signaling in Angpt-1-mediated endothelial barrier defense against mediators of systemic inflammation. More broadly, oxidants generated for signal transduction may have a barrier-promoting role in vascular endothelium.


Assuntos
Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Endotélio Vascular/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Junções Intercelulares , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Trombina/farmacologia
5.
PLoS One ; 9(3): e93040, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663486

RESUMO

Skeletal integrity is dependent on the coordinated actions of bone-forming osteoblasts and bone-resorbing osteoclasts, which recognize and respond to multiple environmental inputs. Here we have studied the roles in bone development and growth of Akt1 and Akt2, two closely related signaling proteins, by evaluating mice lacking either of these enzymes. Global deficiency of Akt1 but not Akt2 caused a reduction in whole body and femoral bone mineral density, in femoral cortical thickness and volume, and in trabecular thickness in both males and females when measured at 20-weeks of age, which was reflected in diminished femoral resistance to fracture. Haplo-deficiency of Akt1 in male mice also decreased femoral cortical and trabecular skeletal parameters, and reduced bone strength. Cell-based studies showed that genetic Akt1 deficiency diminished the rate of proliferation of osteoblast progenitors and impaired osteoclast differentiation in primary culture but that loss of Akt2 did not. Our results demonstrate differential effects of Akt1 and Akt2 on skeletal maturation and architecture through actions on both osteoblast and osteoclast precursors.


Assuntos
Densidade Óssea/fisiologia , Fêmur/enzimologia , Osteoblastos/enzimologia , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/enzimologia , Animais , Diferenciação Celular/fisiologia , Feminino , Fêmur/citologia , Masculino , Camundongos , Camundongos Mutantes , Osteoblastos/citologia , Proteínas Proto-Oncogênicas c-akt/genética , Células-Tronco/citologia
6.
Proc Natl Acad Sci U S A ; 110(36): E3445-54, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23946421

RESUMO

Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Área Sob a Curva , Ligação Competitiva , Linhagem Celular Tumoral , Cristalografia por Raios X , Feminino , Células HCT116 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/uso terapêutico , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Ratos , Ratos Long-Evans , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Bone Miner Res ; 27(6): 1345-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22407846

RESUMO

Osteoporosis, the most common skeletal disorder, is characterized by low bone mineral density (BMD) and an increased risk of fragility fractures. BMD is the best clinical predictor of future osteoporotic fracture risk, but is a complex trait controlled by multiple environmental and genetic determinants with individually modest effects. Quantitative trait locus (QTL) mapping is a powerful method for identifying chromosomal regions encompassing genes involved in shaping complex phenotypes, such as BMD. Here we have applied QTL analysis to male and female genetically-heterogeneous F(2) mice derived from a cross between C57BL/6 and DBA/2 strains, and have identified 11 loci contributing to femoral BMD. Further analysis of a QTL on mouse chromosome 7 following the generation of reciprocal congenic strains has allowed us to determine that the high BMD trait, which tracks with the DBA/2 chromosome and exerts equivalent effects on male and female mice, is manifested by enhanced osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and by increased growth of metatarsal bones in short-term primary culture. An insertion/deletion DNA polymorphism in Ltbp4 exon 12 that causes the in-frame removal of 12 codons in the DBA/2-derived gene maps within 0.6 Mb of the marker most tightly linked to the QTL. LTBP4, one of four paralogous mouse proteins that modify the bioavailability of the transforming growth factor ß (TGF-ß) family of growth factors, is expressed in differentiating MSC-derived osteoblasts and in long bones, and reduced responsiveness to TGF-ß1 is observed in MSCs of mice homozygous for the DBA/2 chromosome 7. Taken together, our results identify a potential genetic and biochemical relationship between decreased TGF-ß1-mediated signaling and enhanced femoral BMD that may be regulated by a variant LTBP4 molecule.


Assuntos
Osso e Ossos/metabolismo , Locos de Características Quantitativas/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cruzamentos Genéticos , Feminino , Fêmur/anatomia & histologia , Fêmur/metabolismo , Estudos de Associação Genética , Laboratórios , Escore Lod , Masculino , Ossos do Metatarso/efeitos dos fármacos , Ossos do Metatarso/crescimento & desenvolvimento , Camundongos , Camundongos Congênicos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Característica Quantitativa Herdável , Ratos , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/genética
8.
Mol Cell Biol ; 32(2): 490-500, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064480

RESUMO

Maintaining optimal bone integrity, mass, and strength throughout adult life requires ongoing bone remodeling, which involves coordinated activity between actions of bone-resorbing osteoclasts and bone forming-osteoblasts. Osteoporosis is a disorder of remodeling in which bone resorption outstrips deposition, leading to diminished bone mass and an increased risk of fractures. Here we identify Akt1 as a unique signaling intermediate in osteoblasts that can control both osteoblast and osteoclast differentiation. Targeted knockdown of Akt1 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line or genetic knockout of Akt1 stimulated osteoblast differentiation secondary to increased expression of the osteogenic transcription factor Runx2. Despite enhanced osteoblast differentiation, coupled osteoclastogenesis in Akt1 deficiency was markedly inhibited, with reduced accumulation of specific osteoclast mRNAs and proteins and impaired fusion to form multinucleated osteoclasts, defects secondary to diminished production of receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (m-CSF), critical osteoblast-derived osteoclast differentiation factors. Delivery of recombinant lentiviruses encoding Akt1 but not Akt2 to Akt1-deficient osteoblast progenitors reversed the increased osteoblast differentiation and, by boosting accumulation of RANKL and m-CSF, restored normal osteoclastogenesis, as did the addition of recombinant RANKL to conditioned culture medium from Akt1-deficient osteoblasts. Our results support the idea that targeted inhibition of Akt1 could lead to therapeutically useful net bone acquisition, and they indicate that closely related Akt1 and Akt2 exert distinct effects on cellular differentiation pathways.


Assuntos
Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ligante RANK/metabolismo , Transdução de Sinais
9.
J Biol Chem ; 287(2): 1510-9, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22117064

RESUMO

The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.


Assuntos
Dissulfetos/química , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Modelos Moleculares , Mapeamento de Peptídeos/métodos , Motivos de Aminoácidos , Animais , Linhagem Celular , Cisteína , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Espectrometria de Massas , Camundongos
10.
Mol Cell Biol ; 30(4): 1018-27, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995912

RESUMO

Mesenchymal stem cells are essential for repair of bone and other supporting tissues. Bone morphogenetic proteins (BMPs) promote commitment of these progenitors toward an osteoblast fate via functional interactions with osteogenic transcription factors, including Dlx3, Dlx5, and Runx2, and also can direct their differentiation into bone-forming cells. BMP-2-stimulated osteoblast differentiation additionally requires continual signaling from insulin-like growth factor (IGF)-activated pathways. Here we identify Akt2 as a critical mediator of IGF-regulated osteogenesis. Targeted knockdown of Akt2 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line, or genetic knockout of Akt2, did not interfere with BMP-2-mediated signaling but resulted in inhibition of osteoblast differentiation at an early step that preceded production of Runx2. In contrast, Akt1-deficient cells differentiated normally. Complete biochemical and morphological osteoblast differentiation was restored in cells lacking Akt2 by adenoviral delivery of Runx2 or by a recombinant lentivirus encoding wild-type Akt2. In contrast, lentiviral Akt1 was ineffective. Taken together, these observations define a specific role for Akt2 as a gatekeeper of osteogenic differentiation through regulation of Runx2 gene expression and indicate that the closely related Akt1 and Akt2 exert distinct effects on the differentiation of mesenchymal precursors.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Osteogênese , Proteínas Proto-Oncogênicas c-akt/genética
11.
J Cell Sci ; 122(Pt 5): 716-26, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208758

RESUMO

Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is crucial for normal skeletal development and for bone remodeling. Osteogenesis is primarily regulated by bone morphogenetic proteins (BMPs), which activate gene expression programs driven by bone-specific transcription factors. In a mesenchymal stem cell model of osteoblast commitment and differentiation controlled by BMP2, we show that an inhibitor of PI3-kinase or a dominant-negative Akt were as potent in preventing osteoblast differentiation as the IGF binding protein IGFBP5, whereas a Mek inhibitor was ineffective. Conversely, an adenovirus encoding an inducible-active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could restore normal osteogenesis. Inhibition of PI3-kinase or Akt did not block BMP2-mediated signaling, because the Smad-responsive genes Sox9 and JunB were induced normally under all experimental conditions. When activated during different stages of osteoblast maturation, dominant-negative Akt prevented accumulation of bone-specific alkaline phosphatase and reduced mineralization, and more significantly inhibited the longitudinal growth of metatarsal bones in primary culture by interfering with both chondrocyte and osteoblast development and function. We conclude that an intact IGF-induced PI3-kinase-Akt signaling cascade is essential for BMP2-activated osteoblast differentiation and maturation, bone development and growth, and suggest that manipulation of this pathway could facilitate bone remodeling and fracture repair.


Assuntos
Desenvolvimento Ósseo/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Osteoblastos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 2/genética , Linhagem Celular , Cromonas/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/metabolismo , Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/genética
12.
Mol Endocrinol ; 22(5): 1238-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18292241

RESUMO

Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is critical for normal skeletal development and for bone remodeling and repair throughout the lifespan. In most tissues, IGF actions are modulated by IGF-binding proteins (IGFBPs). IGFBP-5 is the most abundant IGFBP in bone, and previous studies have suggested that it may either enhance or inhibit osteoblast differentiation in culture and may facilitate or block bone growth in vivo. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5 in bone, we studied its effects in differentiating osteoblasts and in primary bone cultures. Purified wild-type (WT) mouse IGFBP-5 or a recombinant adenovirus expressing IGFBP-5WT each prevented osteogenic differentiation induced by the cytokine bone morphogenetic protein (BMP)-2 at its earliest stages without interfering with BMP-mediated signaling, whereas an analog with reduced IGF binding (N domain mutant) was ineffective. When added at later phases of bone cell maturation, IGFBP-5WT but not IGFBP-5N blocked mineralization, prevented longitudinal growth of mouse metatarsal bones in short-term primary culture, and inhibited their endochondral ossification. Because an IGF-I variant (R3IGF-I) with diminished affinity for IGFBPs promoted full osteogenic differentiation in the presence of IGFBP-5WT, our results show that IGFBP-5 interferes with IGF action in osteoblasts and provides a framework for discerning mechanisms of collaboration between signal transduction pathways activated by BMPs and IGFs in bone.


Assuntos
Diferenciação Celular/fisiologia , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Osteoblastos/metabolismo , Somatomedinas/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Feminino , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Ossos do Metatarso/citologia , Ossos do Metatarso/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Osteoblastos/citologia , Gravidez , Transfecção , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia
13.
Mol Endocrinol ; 22(1): 206-15, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17885206

RESUMO

Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Músculo Esquelético/citologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Immunoblotting , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Músculo Esquelético/metabolismo , Proteínas Mutantes/farmacologia , Mutação , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , Fatores de Tempo , Troponina/metabolismo
14.
J Biol Chem ; 282(43): 31666-74, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17698843

RESUMO

Growth hormone (GH) affects bone size and mass in part through stimulating insulin-like growth factor type 1 (IGF-1) production in liver and bone. Whether GH acts independent of IGF-1 in bone remains unclear. To define the mode of GH action in bone, we have used a Cre/loxP system in which the type 1 IGF-1 receptor (Igf1r) has been disrupted specifically in osteoblasts in vitro and in vivo. Calvarial osteoblasts from mice homozygous for the floxed IGF-1R allele (IGF-1R(flox/flox)) were infected with adenoviral vectors expressing Cre. Disruption of IGF-1R mRNA (>90%) was accompanied by near elimination of IGF-1R protein but retention of GHR protein. GH-induced STAT5 activation was consistently greater in osteoblasts with an intact IGF-1R. Osteoblasts lacking IGF-1R retained GH-induced ERK and Akt phosphorylation and GH-stimulated IGF-1 and IGFBP-3 mRNA expression. GH-induced osteoblast proliferation was abolished by Cre-mediated disruption of the IGF-1R or co-incubation of cells with an IGF-1-neutralizing antibody. By contrast, GH inhibited apoptosis in osteoblasts lacking the IGF-1R. To examine the effects of GH on osteoblasts in vivo, mice wild type for the IGF-1R treated with GH subcutaneously for 7 days showed a doubling in the number of osteoblasts lining trabecular bone, whereas osteoblast numbers in similarly treated mice lacking the IGF-1R in osteoblasts were not significantly affected. These results indicate that although direct IGF-1R-independent actions of GH on osteoblast apoptosis can be demonstrated in vitro, IGF-1R is required for anabolic effects of GH in osteoblasts in vivo.


Assuntos
Hormônio do Crescimento/farmacologia , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Adenoviridae/genética , Alelos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Hormônio do Crescimento/administração & dosagem , Injeções Subcutâneas , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia , Fatores de Tempo
15.
J Biol Chem ; 280(22): 21162-8, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15802266

RESUMO

Mutations in the Wnt co-receptor LRP5 alter bone mass in humans, but the mechanisms responsible for Wnts actions in bone are unclear. To investigate the role of the classical Wnt signaling pathway in osteogenesis, we generated mice lacking the beta-catenin or adenomatous polyposis coli (Apc) genes in osteoblasts. Loss of beta-catenin produced severe osteopenia with striking increases in osteoclasts, whereas constitutive activation of beta-catenin in the conditional Apc mutants resulted in dramatically increased bone deposition and a disappearance of osteoclasts. In vitro, osteoblasts lacking the beta-catenin gene exhibited impaired maturation and mineralization with elevated expression of the osteoclast differentiation factor, receptor activated by nuclear factor-kappaB ligand (RANKL), and diminished expression of the RANKL decoy receptor, osteoprotegerin. By contrast, Apc-deficient osteoblasts matured normally but demonstrated decreased expression of RANKL and increased osteoprotegerin. These findings suggest that Wnt/beta-catenin signaling in osteoblasts coordinates postnatal bone acquisition by controlling the differentiation and activity of both osteoblasts and osteoclasts.


Assuntos
Osso e Ossos/metabolismo , Proteínas do Citoesqueleto/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transativadores/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/fisiologia , Animais , Animais Recém-Nascidos , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proteínas do Citoesqueleto/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Fêmur/metabolismo , Regulação da Expressão Gênica , Genes APC , Genótipo , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais , Transdução de Sinais , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transativadores/metabolismo , Proteínas Wnt , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA