Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
2.
Mol Ther Methods Clin Dev ; 31: 101135, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027064

RESUMO

Immunotherapy of acute myeloid leukemia (AML) has been challenging because the lack of tumor-specific antigens results in "on-target, off-tumor" toxicity. To unlock the full potential of AML therapies, we used CRISPR-Cas9 to genetically ablate the myeloid protein CD33 from healthy donor hematopoietic stem and progenitor cells (HSPCs), creating tremtelectogene empogeditemcel (trem-cel). Trem-cel is a HSPC transplant product designed to provide a reconstituted hematopoietic compartment that is resistant to anti-CD33 drug cytotoxicity. Here, we describe preclinical studies and process development of clinical-scale manufacturing of trem-cel. Preclinical data showed proof-of-concept with loss of CD33 surface protein and no impact on myeloid cell differentiation or function. At clinical scale, trem-cel could be manufactured reproducibly, routinely achieving >70% CD33 editing with no effect on cell viability, differentiation, and function. Trem-cel pharmacology studies using mouse xenograft models showed long-term engraftment, multilineage differentiation, and persistence of gene editing. Toxicology assessment revealed no adverse findings, and no significant or reproducible off-target editing events. Importantly, CD33-knockout myeloid cells were resistant to the CD33-targeted agent gemtuzumab ozogamicin in vitro and in vivo. These studies supported the initiation of the first-in-human, multicenter clinical trial evaluating the safety and efficacy of trem-cel in patients with AML (NCT04849910).

4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865281

RESUMO

On-target toxicity to normal cells is a major safety concern with targeted immune and gene therapies. Here, we developed a base editing (BE) approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate (NHP) hematopoietic stem and progenitor cells (HSPCs) protects from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo , thus demonstrating potential for novel immunotherapies with reduced off-leukemia toxicity. For broader applications to gene therapies, we demonstrated highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes, resulting in long-term persistence of dual gene-edited cells with HbF reactivation in NHPs. In vitro , dual gene-edited cells could be enriched via treatment with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Together, our results highlight the potential of adenine base editors for improved immune and gene therapies.

6.
Oncogene ; 42(1): 26-34, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357573

RESUMO

Many therapeutic bispecific T-cell engagers (BiTEs) are in clinical trials. A modular and efficient process to create BiTEs would accelerate their development and clinical applicability. In this study, we present the design, production, and functional activity of a novel bispecific format utilizing synthetic orthogonal heterodimers to form a multichain modular design. Further addition of an immunoglobulin hinge region allowed a stable covalent linkage between the heterodimers. As proof-of-concept, we utilized CD33 and CD3 binding scFvs to engage leukemia cells and T-cells respectively. We provide evidence that this novel bispecific T-cell engager (termed IgGlue-BiTE) could bind both CD3+ and CD33+ cells and facilitates robust T-cell mediated cytotoxicity on AML cells in vitro. In a mouse model of minimal residual disease, we showed that the novel IgGlue-BiTE greatly extended survival, and mice of this treatment group were free of leukemia in the bone marrow. These findings suggest that the IgGlue-BiTE allows for robust simultaneous engagement with both antigens of interest in a manner conducive to T cell cytotoxicity against AML. These results suggest a compelling modular system for bispecific antibodies, as the CD3- and CD33-binding domains can be readily swapped with domains binding to other cancer- or immune cell-specific antigens.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Animais , Camundongos , Linfócitos T/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Leucemia Mieloide Aguda/metabolismo , Complexo CD3
7.
Cytotherapy ; 25(3): 245-253, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437190

RESUMO

BACKGROUND AIMS: CD4+CD25+CD127lo regulatory T cells (Tregs) are responsible for maintaining immune homeostasis. Tregs can be rendered defective and deficient as a result of the immune imbalance seen in lung injury, and such dysfunction can play a major role in continued tissue inflammation. The authors hypothesized that adoptive therapy with healthy allogeneic umbilical cord blood (UCB)-derived Tregs may be able to resolve inflammation. RESULTS: Ex vivo-expanded UCB Tregs exhibited a unique phenotype with co-expression of CD45RA+CD45RO+ >80% and lung homing markers, including CD49d. UCB Tregs did not turn pathogenic when exposed to IL-6. Co-culture with increasing doses of dexamethasone led to a synergistic increase in UCB Treg-induced apoptosis of conventional T cells (Tcons), which translated into significantly higher suppression of proliferating Tcons, especially at a lower Treg:Tcon ratio. Multiple injections of UCB Tregs led to their preferential accumulation in lung tissue in an immune injury xenogenic model. A significant decrease in lung resident cytotoxic CD8+ T cells (P = 0.0218) correlated with a sustained decrease in their systemic distribution compared with controls (P < 0.0001) (n = 7 per arm) as well as a decrease in circulating human soluble CD40 ligand level (P = 0.031). Tissue architecture was preserved in the treatment arm, and a significant decrease in CD3+ and CD8+ burden was evident in immunohistochemistry analysis. CONCLUSIONS: UCB Treg adoptive therapy is a promising therapeutic strategy for treatment of lung injury.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Lesão Pulmonar , Pneumonia , Humanos , Linfócitos T Reguladores , Sangue Fetal , Linfócitos T CD8-Positivos , Inflamação/terapia , Antígenos Comuns de Leucócito
8.
Cancer Discov ; 12(4): 1106-1127, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046097

RESUMO

Remodeling of the microenvironment by tumor cells can activate pathways that favor cancer growth. Molecular delineation and targeting of such malignant-cell nonautonomous pathways may help overcome resistance to targeted therapies. Herein we leverage genetic mouse models, patient-derived xenografts, and patient samples to show that acute myeloid leukemia (AML) exploits peripheral serotonin signaling to remodel the endosteal niche to its advantage. AML progression requires the presence of serotonin receptor 1B (HTR1B) in osteoblasts and is driven by AML-secreted kynurenine, which acts as an oncometabolite and HTR1B ligand. AML cells utilize kynurenine to induce a proinflammatory state in osteoblasts that, through the acute-phase protein serum amyloid A (SAA), acts in a positive feedback loop on leukemia cells by increasing expression of IDO1-the rate-limiting enzyme for kynurenine synthesis-thereby enabling AML progression. This leukemia-osteoblast cross-talk, conferred by the kynurenine-HTR1B-SAA-IDO1 axis, could be exploited as a niche-focused therapeutic approach against AML, opening new avenues for cancer treatment. SIGNIFICANCE: AML remains recalcitrant to treatments due to the emergence of resistant clones. We show a leukemia-cell nonautonomous progression mechanism that involves activation of a kynurenine-HTR1B-SAA-IDO1 axis between AML cells and osteoblasts. Targeting the niche by interrupting this axis can be pharmacologically harnessed to hamper AML progression and overcome therapy resistance. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Cinurenina , Leucemia Mieloide Aguda , Animais , Humanos , Cinurenina/metabolismo , Cinurenina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930825

RESUMO

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.


Assuntos
Anemia/metabolismo , Eritropoese , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Síndromes Mielodisplásicas/metabolismo , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Anemia/genética , Anemia/patologia , Diferenciação Celular/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Humanos , Células K562 , MAP Quinase Quinase Quinases/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Gastroenterology ; 162(3): 890-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883119

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinogênese/patologia , Linhagem da Célula , Neoplasias Colorretais/patologia , Células-Tronco Mesenquimais/fisiologia , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/patologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Organoides/patologia , Organoides/fisiologia , Prognóstico , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Taxa de Sobrevida , Microambiente Tumoral
11.
Swiss Med Wkly ; 151: w20483, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872378

RESUMO

Tumour-infiltrating myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells. The main feature of MDSCs is their ability to suppress T-cell activation and function, which leads to immunosuppressive activity in the tumour microenvironment. Higher numbers of circulating and tumour-infiltrating MDSCs have been observed in a large number of patients with various types of tumour, and are linked to poor prognosis, especially in hormone-driven tumours. Recently, it has been demonstrated that the recruitment of MDSCs in prostate cancer confers resistance to canonical endocrine therapies, opening a new approach to the treatment of hormone-driven cancer patients.


Assuntos
Células Supressoras Mieloides , Neoplasias da Próstata , Hormônios , Humanos , Masculino , Células Mieloides , Microambiente Tumoral
12.
Cancer J ; 27(2): 143-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33750074

RESUMO

ABSTRACT: Myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia are a group of clonal hematopoietic stem progenitor cell disorders mainly effecting the elderly. Chemotherapeutic approaches improved the outcome in majority of the patients, but it is generally associated with severe toxicities and relapse and does not benefit all the patients. With the success of adoptive cell therapies including chimeric antigen receptor T-cell therapy in treating certain B-cell malignancies, these therapeutic approaches are also being tested for myeloid malignancies, but the preclinical and limited clinical trial data suggest there are significant challenges. The principal hurdle to efficient targeted immunotherapy approaches is the lack of a unique targetable antigen on cancer cells leading to off-target effects including myelosuppression due to depletion of normal myeloid cells. Advanced age of the patients, comorbidities, immunosuppressive bone marrow microenvironment, and cytokine release syndrome are some other challenges that are not unique to myeloid malignancies but pose significant challenge for the successful adaptation of this approach for treatment. In this review, we highlight the challenges and solutions to adopt chimeric antigen receptor T-cell therapies to treat myeloid malignancies.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
13.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197448

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/patologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulinas/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Res ; 81(4): 935-944, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323382

RESUMO

p53 is a short-lived protein with low basal levels under normal homeostasis conditions. However, upon DNA damage, levels of p53 dramatically increase for its activation. Although robust stabilization of p53 serves as a "trademark" for DNA damage responses, the requirement for such dramatic protein stabilization in tumor suppression has not been well addressed. Here we generated a mutant p53KQ mouse where all the C-terminal domain lysine residues were mutated to glutamines (K to Q mutations at K367, K369, K370, K378, K379, K383, and K384) to mimic constitutive acetylation of the p53 C-terminus. Because of p53 activation, p53KQ/KQ mice were perinatal lethal, yet this lethality was averted in p53KQ/- mice, which displayed normal postnatal development. Nevertheless, p53KQ/- mice died prematurely due to anemia and hematopoiesis failure. Further analyses indicated that expression of the acetylation-mimicking p53 mutant in vivo induces activation of p53 targets in various tissues without obviously increasing p53 levels. In the well-established pancreatic ductal adenocarcinoma (PDAC) mouse model, expression of the acetylation-mimicking p53-mutant protein effectively suppressed K-Ras-induced PDAC development in the absence of robust p53 stabilization. Together, our results provide proof-of-principle evidence that p53-mediated transcriptional function and tumor suppression can be achieved independently of its robust stabilization and reveal an alternative approach to activate p53 function for therapeutic purposes. SIGNIFICANCE: Although robust p53 stabilization is critical for acute p53 responses such as DNA damage, this study underscores the important role of low basal p53 protein levels in p53 activation and tumor suppression.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Acetilação , Animais , Apoptose/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Células Cultivadas , Dano ao DNA/genética , Genes Supressores de Tumor/fisiologia , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional/genética , Estabilidade Proteica , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/química
15.
Cancers (Basel) ; 12(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756430

RESUMO

In most instances, multiple myeloma (MM) plasma cells (PCs) are reliant on factors made by cells of the bone marrow (BM) stroma for their survival and growth. To date, the nature and cellular composition of the BM tumor microenvironment and the critical factors which drive tumor progression remain imprecisely defined. Our studies show that Gremlin1 (Grem1), a highly conserved protein, which is abundantly secreted by a subset of BM mesenchymal stromal cells, plays a critical role in MM disease development. Analysis of human and mouse BM stromal samples by quantitative PCR showed that GREM1/Grem1 expression was significantly higher in the MM tumor-bearing cohorts compared to healthy controls (p < 0.05, Mann-Whitney test). Additionally, BM-stromal cells cultured with 5TGM1 MM PC line expressed significantly higher levels of Grem1, compared to stromal cells alone (p < 0.01, t-test), suggesting that MM PCs promote increased Grem1 expression in stromal cells. Furthermore, the proliferation of 5TGM1 MM PCs was found to be significantly increased when co-cultured with Grem1-overexpressing stromal cells (p < 0.01, t-test). To examine the role of Grem1 in MM disease in vivo, we utilized the 5TGM1/KaLwRij mouse model of MM. Our studies showed that, compared to immunoglobulin G (IgG) control antibody-treated mice, mice treated with an anti-Grem1 neutralizing antibody had a decrease in MM tumor burden of up to 81.2% (p < 0.05, two-way ANOVA). The studies presented here demonstrate, for the first time, a novel positive feedback loop between MM PCs and BM stroma, and that inhibiting this vicious cycle with a neutralizing antibody can dramatically reduce tumor burden in a preclinical mouse model of MM.

16.
Clin Cancer Res ; 26(14): 3662-3670, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376656

RESUMO

PURPOSE: Patients with colorectal cancer with peritoneal metastases (CRPMs) have limited treatment options and the lowest colorectal cancer survival rates. We aimed to determine whether organoid testing could help guide precision treatment for patients with CRPMs, as the clinical utility of prospective, functional drug screening including nonstandard agents is unknown. EXPERIMENTAL DESIGN: CRPM organoids (peritonoids) isolated from patients underwent parallel next-generation sequencing and medium-throughput drug panel testing ex vivo to identify specific drug sensitivities for each patient. We measured the utility of such a service including: success of peritonoid generation, time to cultivate peritonoids, reproducibility of the medium-throughput drug testing, and documented changes to clinical therapy as a result of the testing. RESULTS: Peritonoids were successfully generated and validated from 68% (19/28) of patients undergoing standard care. Genomic and drug profiling was completed within 8 weeks and a formal report ranking drug sensitivities was provided to the medical oncology team upon failure of standard care treatment. This resulted in a treatment change for two patients, one of whom had a partial response despite previously progressing on multiple rounds of standard care chemotherapy. The barrier to implementing this technology in Australia is the need for drug access and funding for off-label indications. CONCLUSIONS: Our approach is feasible, reproducible, and can guide novel therapeutic choices in this poor prognosis cohort, where new treatment options are urgently needed. This platform is relevant to many solid organ malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Organoides/efeitos dos fármacos , Neoplasias Peritoneais/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Austrália , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/citologia , Peritônio/patologia , Cultura Primária de Células/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes
17.
ACS Omega ; 5(17): 9714-9723, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391458

RESUMO

Given that basal levels of reactive oxygen species (ROS) are higher in cancer cells, there is a growing school of thought that endorses pro-oxidants as potential chemotherapeutic agents. Intriguingly, cerium oxide (CeO2) nanoparticles can manifest either anti- or pro-oxidant activity as a function of differential pH of various subcellular localizations. In an acidic pH environment, for example, in extracellular milieu of cancer cells, CeO2 would function as a pro-oxidant. Based on this concept, the present study is designed to investigate the pro-oxidant activities of CeO2 in human colorectal carcinoma cell line (HCT 116). For comparison, we have also studied the effect of ceria nanoparticles on human embryonic kidney (HEK 293) cells. Dose-dependent viability of cancerous as well as normal cells has been assessed by treating them independently with CeO2 nanoparticles of different concentrations (5-100 µg/mL) in the culture media. The half maximal inhibitory concentration (IC50) of nanoceria for HCT 116 is found to be 50.48 µg/mL while that for the HEK 293 cell line is 92.03 µg/mL. To understand the intricate molecular mechanisms of CeO2-induced cellular apoptosis, a series of experiments have been conducted. The apoptosis-inducing ability of nanoceria has been investigated by Annexin V-FITC staining, caspase 3/9 analysis, cytochrome c release, intracellular ROS analysis, and mitochondrial membrane potential analysis using flow cytometry. Experimental data suggest that CeO2 treatment causes DNA fragmentation through enhanced generation of ROS, which ultimately leads to cellular apoptosis through the p53-dependent mitochondrial signaling pathway.

18.
Blood ; 136(11): 1303-1316, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32458004

RESUMO

Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and are generated from lipid peroxides underlying the non-caspase-dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition; GPX4 inhibition is a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.


Assuntos
Aldeído Oxirredutases/fisiologia , Carbolinas/farmacologia , Cicloexilaminas/farmacologia , Ferroptose/efeitos dos fármacos , Hematopoese/fisiologia , Leucemia Mieloide Aguda/enzimologia , Proteínas de Neoplasias/fisiologia , Fenilenodiaminas/farmacologia , Aldeído Oxirredutases/genética , Aldeídos/farmacologia , Animais , Linhagem Celular Tumoral , Citarabina/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/fisiologia , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Ácido Oleico/farmacologia , Proteínas de Fusão Oncogênica/fisiologia , Oxirredução , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia
19.
EMBO J ; 39(5): e102169, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930530

RESUMO

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Assuntos
Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação
20.
Stem Cells ; 38(4): 477-486, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31837053

RESUMO

Osteoarthritis (OA) is a disease of an entire synovial joint characterized by clinical symptoms and distortion of joint tissues, including cartilage, muscles, ligaments, and bone. Although OA is a disease of all joint tissues, it is a defined accessible compartment and is thus amenable to topical surgical and regenerative therapies, including stem cells. All tissues arise from stem progenitor cells, and the relative capacity of different cellular compartments, and different individuals, to renew tissues into adulthood may be important in the onset of many different degenerative diseases. OA is driven by both mechanical and inflammatory factors, but how these factors affect the proliferation and differentiation of cells into cartilage in vivo is largely unknown. Indeed, our very basic understanding of the physiological cellular kinetics and biology of the stem-progenitor cell unit of the articular cartilage, and how this is influenced by mechano-inflammatory injury, is largely unknown. OA seems, rather deceptively, to be the low-hanging fruit for stem cell therapy. Without the basic understanding of the stem cell and progenitor unit that generate and maintain articular cartilage in vivo, we will continue to waste opportunities to both prevent and manage this disease. In this review, we discuss the biology of chondrogenesis, the stem cell populations that support articular cartilage in health and disease, and future opportunities afforded through the translation of basic articular chondrocyte stem cell biology into new clinical therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Medicina Regenerativa/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA