Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125130

RESUMO

During obesity and high fat-diet (HFD) feeding in mice, sustained low-grade inflammation includes not only increased pro-inflammatory macrophages in the expanding adipose tissue, but also bone marrow (BM) production of invasive Ly6Chigh monocytes. As BM adiposity also accrues with HFD, we explored the relationship between the gains in BM white adipocytes and invasive Ly6Chigh monocytes by in vivo and ex vivo paradigms. We find a temporal and causal link between BM adipocyte whitening and the Ly6Chigh monocyte surge, preceding the adipose tissue macrophage rise during HFD in mice. Phenocopying this, ex vivo treatment of BM cells with conditioned media from BM adipocytes or bona fide white adipocytes favoured Ly6Chigh monocyte preponderance. Notably, Ly6Chigh skewing was preceded by monocyte metabolic reprogramming towards glycolysis, reduced oxidative potential and increased mitochondrial fission. In sum, short-term HFD changes BM cellularity, resulting in local adipocyte whitening driving a gradual increase and activation of invasive Ly6Chigh monocytes.


Assuntos
Medula Óssea , Monócitos , Adipócitos , Animais , Meios de Cultivo Condicionados , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Obesidade/metabolismo
2.
Autophagy ; 18(1): 86-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906557

RESUMO

Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagia , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Escherichia coli , Interferons , Intestinos , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatidilinositóis , Fator de Iniciação 2 em Procariotos , Prolina , Proteínas Serina-Treonina Quinases , Sirolimo , Transativadores , Fatores de Transcrição , Polimorfismo de Nucleotídeo Único
3.
Methods Mol Biol ; 2366: 165-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236638

RESUMO

Nuclear factor-kappa B (NF-κB) inducing kinase (NIK), a key component of the noncanonical NF-κB pathway, directs a range of physiological processes, such as lymphoid organogenesis, immune cell differentiation, and immune responses. Aberrant noncanonical NF-κΒ signaling also causes human ailments, including autoimmune and neoplastic diseases. As such, NIK is constitutively degraded in resting cells, and accumulates upon noncanonical NF-κB signaling. NIK then associates with and phosphorylates IkappaB kinase 1 (IKK1, alternately IKKα). Subsequently, the NIK-IKK1 complex mediates the phosphorylation of p100 that triggers partial proteolysis of p100 into p52. Typically, accumulation of NIK or processing of p100 is estimated by immunoblot analyses, and these indirect measurements are used as a surrogate for cellular NIK activity. However, studies involving knockout and cancerous cells indicated that the activity of NIK-IKK1 might not always correlate with the abundance of NIK or with the relative level of p52 and p100. In this report, we describe a specific and sensitive assay for direct evaluation of cellular NIK-IKK1 activity. Here, NIK immunoprecipitates are examined for the presence of IKK1-dependent kinase activity toward p100. The NIK-IKK1 assay captured selectively noncanonical NF-κB activation in the context of multiple cell activating stimuli and cell types, including patient-derived myeloma cells. We suggest that our assay may help advance our understanding of the role of NIK in health and diseases.


Assuntos
Transdução de Sinais , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação , Proteólise
4.
Trends Immunol ; 42(7): 551-553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103266

RESUMO

In a recent publication, Nayar et al. uncover specific inflammatory cell populations associated with Crohn's disease (CD) pathogenesis, and a gp130-STAT3 signaling axis linked to disease in anti-TNF antibody treatment-refractory patients. Therefore, gp130 blockade might represent a potential CD therapy approach, perhaps in conjunction with existing anti-TNF treatment regimes.


Assuntos
Doença de Crohn , Receptor gp130 de Citocina , Humanos , Infliximab , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155144

RESUMO

Aberrant inflammation, such as that associated with inflammatory bowel disease (IBD), is fueled by the inordinate activity of RelA/NF-κB factors. As such, the canonical NF-κB module mediates controlled nuclear activation of RelA dimers from the latent cytoplasmic complexes. What provokes pathological RelA activity in the colitogenic gut remains unclear. The noncanonical NF-κB pathway typically promotes immune organogenesis involving Nfkb2 gene products. Because NF-κB pathways are intertwined, we asked whether noncanonical signaling aggravated inflammatory RelA activity. Our investigation revealed frequent engagement of the noncanonical pathway in human IBD. In a mouse model of experimental colitis, we established that Nfkb2-mediated regulations escalated the RelA-driven proinflammatory gene response in intestinal epithelial cells, exacerbating the infiltration of inflammatory cells and colon pathologies. Our mechanistic studies clarified that cell-autonomous Nfkb2 signaling supplemented latent NF-κB dimers, leading to a hyperactive canonical RelA response in the inflamed colon. In sum, the regulation of latent NF-κB dimers appears to link noncanonical Nfkb2 signaling to RelA-driven inflammatory pathologies and may provide for therapeutic targets.


Assuntos
Inflamação/patologia , Intestinos/patologia , Subunidade p52 de NF-kappa B/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Animais , Colite/metabolismo , Colite/patologia , Progressão da Doença , Células Epiteliais/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Receptor beta de Linfotoxina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Subunidade p52 de NF-kappa B/deficiência , Células Estromais/metabolismo
6.
Cell Rep ; 34(4): 108677, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503439

RESUMO

Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.


Assuntos
Neoplasias Colorretais/imunologia , Células Supressoras Mieloides/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Animais , Carcinogênese/imunologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Microambiente Tumoral/imunologia
7.
Nat Commun ; 11(1): 4112, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807784

RESUMO

Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.


Assuntos
Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Fagócitos/metabolismo , Pinocitose/genética , Pinocitose/fisiologia , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Roundabout
8.
Oral Maxillofac Surg ; 23(4): 499-500, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31451956

RESUMO

INTRODUCTION: The management of condylar fractures remains controversial. Open treatment of condylar fractures is a routine treatment in cases of displaced or dislocated condylar and subcondylar fractures. TECHNICAL NOTE: Because of the pull of the lateral pterygoid muscle, the condylar fragment is usually located anterior and medial to the mandible. Distraction of the mandible in an inferior direction simplifies proper reduction. Various distraction devices have been described in literature. We describe a technique of using the Heister mouth gag at the surgical site to aid in reduction of displaced dislocated condylar fractures.


Assuntos
Luxações Articulares , Fraturas Mandibulares , Fixação Interna de Fraturas , Humanos , Côndilo Mandibular , Boca
9.
J Biol Chem ; 294(22): 9007-9015, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30996003

RESUMO

NOD1 and NOD2 are intracellular sensors of bacterial peptidoglycan that belong to the Nod-like receptor family of innate immune proteins. In addition to their role as direct bacterial sensors, it was proposed that the nucleotide-binding oligomerization domain (NOD) proteins could detect endoplasmic reticulum (ER) stress induced by thapsigargin, an inhibitor of the sarcoplasmic or endoplasmic reticulum calcium ATPase family that pumps Ca2+ into the ER, resulting in pro-inflammatory signaling. Here, we confirm that thapsigargin induces NOD-dependent pro-inflammatory signaling in epithelial cells. However, the effect was specific to thapsigargin, as tunicamycin and the subtilase cytotoxin SubAB from Shiga toxigenic Escherichia coli, which induce ER stress by other mechanisms, did not induce cytokine expression. The calcium ionophore A23187 also induced NOD-dependent signaling, and calcium chelators demonstrated a role for both intracellular and extracellular calcium in mediating thapsigargin-induced and NOD-dependent pro-inflammatory signaling, in part through the activation of plasma membrane-associated calcium release-activated channels. Moreover, our results demonstrate that both endocytosis and the addition of serum to the cell culture medium were required for thapsigargin-mediated NOD activation. Finally, we analyzed cell culture grade fetal calf serum as well as serum from laboratory mice using HPLC and MS identified the presence of various peptidoglycan fragments. We propose that cellular perturbations that affect intracellular Ca2+ can trigger internalization of peptidoglycan trace contaminants found in culture serum, thereby stimulating pro-inflammatory signaling. The presence of peptidoglycan in animal serum suggests that a homeostatic function of NOD signaling may have been previously overlooked.


Assuntos
Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/sangue , Calcimicina/química , Calcimicina/farmacologia , Cálcio/química , Cálcio/metabolismo , Quimiocina CXCL1/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Interleucina-8/metabolismo , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Transdução de Sinais/efeitos dos fármacos , Tapsigargina/farmacologia
10.
EMBO J ; 36(23): 3501-3516, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061763

RESUMO

Lymphotoxin-beta receptor (LTßR) present on stromal cells engages the noncanonical NF-κB pathway to mediate RelB-dependent expressions of homeostatic chemokines, which direct steady-state ingress of naïve lymphocytes to secondary lymphoid organs (SLOs). In this pathway, NIK promotes partial proteolysis of p100 into p52 that induces nuclear translocation of the RelB NF-κB heterodimers. Microbial infections often deplete homeostatic chemokines; it is thought that infection-inflicted destruction of stromal cells results in the downregulation of these chemokines. Whether inflammation per se also regulates these processes remains unclear. We show that TNF accumulated upon non-infectious immunization of mice similarly downregulates the expressions of these chemokines and consequently diminishes the ingress of naïve lymphocytes in inflamed SLOs. Mechanistically, TNF inactivated NIK in LTßR-stimulated cells and induced the synthesis of Nfkb2 mRNA encoding p100; these together potently accumulated unprocessed p100, which attenuated the RelB activity as inhibitory IκBδ. Finally, a lack of p100 alleviated these TNF-mediated inhibitions in inflamed SLOs of immunized Nfkb2-/- mice. In sum, we reveal that an inhibitory TNF-p100 pathway modulates the adaptive compartment during immune responses.


Assuntos
Mediadores da Inflamação/metabolismo , Tecido Linfoide/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade Adaptativa , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Regulação para Baixo , Quinase I-kappa B/metabolismo , Linfangite/imunologia , Linfangite/metabolismo , Linfangite/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p52 de NF-kappa B/deficiência , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelB/metabolismo , Quinase Induzida por NF-kappaB
11.
Sci Rep ; 7: 46029, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378771

RESUMO

X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton's tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.


Assuntos
Linfócitos B/citologia , Linfócitos B/enzimologia , Diferenciação Celular , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Apoptose , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD40/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Baço/metabolismo
12.
Sci Signal ; 9(457): ra120, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27923915

RESUMO

The nuclear factor κB (NF-κB) transcription factors coordinate the inflammatory immune response during microbial infection. Pathogenic substances engage canonical NF-κB signaling through the heterodimer RelA:p50, which is subjected to rapid negative feedback by inhibitor of κBα (IκBα). The noncanonical NF-κB pathway is required for the differentiation of immune cells; however, cross-talk between both pathways can occur. Concomitantly activated noncanonical signaling generates p52 from the p100 precursor. The synthesis of p100 is induced by canonical signaling, leading to the formation of the late-acting RelA:p52 heterodimer. This cross-talk prolongs inflammatory RelA activity in epithelial cells to ensure pathogen clearance. We found that the Toll-like receptor 4 (TLR4)-activated canonical NF-κB signaling pathway is insulated from lymphotoxin ß receptor (LTßR)-induced noncanonical signaling in mouse macrophage cell lines. Combined computational and biochemical studies indicated that the extent of NF-κB-responsive expression of Nfkbia, which encodes IκBα, inversely correlated with cross-talk. The Nfkbia promoter showed enhanced responsiveness to NF-κB activation in macrophages compared to that in fibroblasts. We found that this hyperresponsive promoter engaged the RelA:p52 dimer generated during costimulation of macrophages through TLR4 and LTßR to trigger synthesis of IκBα at late time points, which prevented the late-acting RelA cross-talk response. Together, these data suggest that, despite the presence of identical signaling networks in cells of diverse lineages, emergent cross-talk between signaling pathways is subject to cell type-specific regulation. We propose that the insulation of canonical and noncanonical NF-κB pathways limits the deleterious effects of macrophage-mediated inflammation.


Assuntos
Macrófagos/metabolismo , Inibidor de NF-kappaB alfa/biossíntese , Subunidade p52 de NF-kappa B/metabolismo , Elementos de Resposta , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/biossíntese , Fator de Transcrição RelA/metabolismo , Animais , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa/genética , Subunidade p52 de NF-kappa B/genética , Células RAW 264.7 , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA