Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173955

RESUMO

BACKGROUND & AIMS: Liver fibrosis is the major driver of hepatocellular carcinoma and liver disease-related death. Approved antifibrotic therapies are absent and compounds in development have limited efficacy. Increased TGF-ß signaling drives collagen deposition by hepatic stellate cells (HSCs)/myofibroblasts. Here, we aimed to dissect the role of the circadian clock (CC) in controlling TGF-ß signaling and liver fibrosis. METHODS: Using CC-mutant mice, enriched HSCs and myofibroblasts obtained from healthy and fibrotic mice in different CC phases and loss-of-function studies in human hepatocytes and myofibroblasts, we investigated the relationship between CC and TGF-ß signaling. We explored hepatocyte-myofibroblast communication through bioinformatic analyses of single-nuclei transcriptomes and performed validation in cell-based models. Using mouse models for MASH (metabolic dysfunction-associated steatohepatitis)-related fibrosis and spheroids from patients with liver disease, we performed proof-of-concept studies to validate pharmacological targetability and clinical translatability. RESULTS: We discovered that the CC oscillator temporally gates TGF-ß signaling and this regulation is broken in fibrosis. We demonstrate that HSCs and myofibroblasts contain a functional CC with rhythmic expression of numerous genes, including fibrogenic genes. Perturbation studies in hepatocytes and myofibroblasts revealed a reciprocal relationship between TGF-ß activation and CC perturbation, which was confirmed in patient-derived ex vivo and in vivo models. Pharmacological modulation of CC-TGF-ß signaling inhibited fibrosis in mouse models in vivo as well as in patient-derived liver spheroids. CONCLUSION: The CC regulates TGF-ß signaling, and the breakdown of this control is associated with liver fibrosis in patients. Pharmacological proof-of-concept studies across different models have uncovered the CC as a novel therapeutic target for liver fibrosis - a growing unmet medical need. IMPACT AND IMPLICATIONS: Liver fibrosis due to metabolic diseases is a global health challenge. Many liver functions are rhythmic throughout the day, being controlled by the circadian clock (CC). Here we demonstrate that regulation of the CC is perturbed upon chronic liver injury and this perturbation contributes to fibrotic disease. By showing that a compound targeting the CC improves liver fibrosis in patient-derived models, this study provides a novel therapeutic candidate strategy to treat fibrosis in patients. Additional studies will be needed for clinical translation. Since the findings uncover a previously undiscovered profibrotic mechanism and therapeutic target, the study is of interest for scientists investigating liver disease, clinical hepatologists and drug developers.

2.
Nat Commun ; 15(1): 7486, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209804

RESUMO

Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk.


Assuntos
Ritmo Circadiano , Hepacivirus , Hepatite C , Hepatócitos , Fígado , Transcriptoma , Humanos , Fígado/metabolismo , Fígado/virologia , Animais , Masculino , Hepatócitos/metabolismo , Hepatócitos/virologia , Camundongos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Ritmo Circadiano/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Relógios Circadianos/genética , Epigênese Genética
3.
Gut ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36591611

RESUMO

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

4.
Gut ; 70(1): 157-169, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217639

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related mortality with chronic viral hepatitis and non-alcoholic steatohepatitis (NASH) as major aetiologies. Treatment options for HCC are unsatisfactory and chemopreventive approaches are absent. Chronic hepatitis C (CHC) results in epigenetic alterations driving HCC risk and persisting following cure. Here, we aimed to investigate epigenetic modifications as targets for liver cancer chemoprevention. DESIGN: Liver tissues from patients with NASH and CHC were analysed by ChIP-Seq (H3K27ac) and RNA-Seq. The liver disease-specific epigenetic and transcriptional reprogramming in patients was modelled in a liver cell culture system. Perturbation studies combined with a targeted small molecule screen followed by in vivo and ex vivo validation were used to identify chromatin modifiers and readers for HCC chemoprevention. RESULTS: In patients, CHC and NASH share similar epigenetic and transcriptomic modifications driving cancer risk. Using a cell-based system modelling epigenetic modifications in patients, we identified chromatin readers as targets to revert liver gene transcription driving clinical HCC risk. Proof-of-concept studies in a NASH-HCC mouse model showed that the pharmacological inhibition of chromatin reader bromodomain 4 inhibited liver disease progression and hepatocarcinogenesis by restoring transcriptional reprogramming of the genes that were epigenetically altered in patients. CONCLUSION: Our results unravel the functional relevance of metabolic and virus-induced epigenetic alterations for pathogenesis of HCC development and identify chromatin readers as targets for chemoprevention in patients with chronic liver diseases.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Epigênese Genética , Hepatite C Crônica/complicações , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinoma Hepatocelular/etiologia , Modelos Animais de Doenças , Hepatite C Crônica/genética , Hepatite C Crônica/patologia , Humanos , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia
5.
Gastroenterology ; 157(2): 537-551.e9, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30978357

RESUMO

BACKGROUND & AIMS: The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS: Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS: We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate ß-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS: We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.


Assuntos
Hepacivirus/patogenicidade , Hepatite C Crônica/patologia , Hepatócitos/patologia , Fígado/patologia , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucose/metabolismo , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Hepatócitos/transplante , Hepatócitos/virologia , Humanos , Fígado/citologia , Fígado/virologia , Metabolômica , Camundongos , Peroxissomos/metabolismo , Peroxissomos/patologia , Proteômica , Fator de Transcrição STAT3/metabolismo , Quimeras de Transplante
6.
Proc Natl Acad Sci U S A ; 112(48): E6683-90, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627259

RESUMO

The molecular mechanisms underlying the events through which alterations in diurnal activities impinge on peripheral circadian clocks (PCCs), and reciprocally how the PCCs affect metabolism, thereby generating pathologies, are still poorly understood. Here, we deciphered how switching the diurnal feeding from the active to the rest phase, i.e., restricted feeding (RF), immediately creates a hypoinsulinemia during the active phase, which initiates a metabolic reprogramming by increasing FFA and glucagon levels. In turn, peroxisome proliferator-activated receptor alpha (PPARα) activation by free fatty acid (FFA), and cAMP response element-binding protein (CREB) activation by glucagon, lead to further metabolic alterations during the circadian active phase, as well as to aberrant activation of expression of the PCC components nuclear receptor subfamily 1, group D, member 1 (Nr1d1/RevErbα), Period (Per1 and Per2). Moreover, hypoinsulinemia leads to an increase in glycogen synthase kinase 3ß (GSK3ß) activity that, through phosphorylation, stabilizes and increases the level of the RevErbα protein during the active phase. This increase then leads to an untimely repression of expression of the genes containing a RORE DNA binding sequence (DBS), including the Bmal1 gene, thereby initiating in RF mice a 12-h PCC shift to which the CREB-mediated activation of Per1, Per2 by glucagon modestly contributes. We also show that the reported corticosterone extraproduction during the RF active phase reflects an adrenal aberrant activation of CREB signaling, which selectively delays the activation of the PPARα-RevErbα axis in muscle and heart and accounts for the retarded shift of their PCCs.


Assuntos
Relógios Circadianos/fisiologia , Comportamento Alimentar , Fatores de Transcrição ARNTL/genética , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Regulação da Expressão Gênica , Glucagon/metabolismo , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculos/metabolismo , Mutação , PPAR alfa/metabolismo , Proteínas Circadianas Period/metabolismo , Transdução de Sinais , Fatores de Tempo
7.
FEBS J ; 279(7): 1220-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22309289

RESUMO

Hepatitis B virus X protein (HBx) is a putative viral oncoprotein that plays an important role in various cellular processes, including modulation of the phosphatidylinositol 3-kinase/Akt signalling pathway. However, the molecular mechanism of Akt activation remains elusive. Here we show that HBx interacts with Akt1 kinase and is phosphorylated at serine 31 as indicated by mutational analysis of the Akt recognition motif (creating the HBxS31A mutant) or immunoblotting of HBx immunoprecipitates using Akt motif-specific antibody. The Akt-dependent phosphorylation of HBx was abrogated in the presence of the phosphatidylinositol 3-kinase inhibitor LY294002 or Akt1 gene silencing by specific siRNA. Co-immunoprecipitation studies provided evidence for HBx-Akt interaction in a cellular environment. This interaction was also confirmed in hepatoma HepG2.2.15 cells in which HBx was expressed at physiological levels from the integrated hepatitis B viral genome. The HBx-Akt interaction was essential for Akt signalling, and involved displacement of the Akt-bound negative regulator 'C-terminal modulator protein' by HBx. HBx-activated Akt phosphorylated its downstream target glycogen synthase kinase 3ß, leading to stabilization of ß-catenin, while p65 phosphorylation resulted in enhanced promoter recruitment and expression of target genes encoding cyclin D1 and Bcl-XL. Further, the oncogenic potential of HBx was significantly augmented in the presence of Akt in a soft agar colony formation assay. Together, these results suggest that oncogenic co-operation between HBx and Akt may be important for cell proliferation, abrogation of apoptosis and tumorigenic transformation of cells.


Assuntos
Vírus da Hepatite B/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
8.
J Biol Chem ; 285(23): 17453-64, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385564

RESUMO

NF-kappaB family members play a pivotal role in many cellular and organismal functions, including the cell cycle. As an activator of cyclin D1 and p21(Waf1) genes, NF-kappaB has been regarded as a critical modulator of cell cycle. To study the involvement of NF-kappaB in G(1)/S phase regulation, the levels of selected transcriptional regulators were monitored following overexpression of NF-kappaB or its physiological induction by tumor necrosis factor-alpha. Cyclin E gene was identified as a major transcriptional target of NF-kappaB. Recruitment of NF-kappaB to the cyclin E promoter was correlated with the transrepression of cyclin E gene. Ligation-mediated PCR and micrococcal nuclease-Southern assays suggested the nucleosomal nature of this region while chromatin immunoprecipitation analysis confirmed the exchange of cofactors following tumor necrosis factor-alpha treatment or release from serum starvation. There was a progressive reduction in cyclin E transcription along with the accumulation of catalytically inactive cyclin E-cdk2 complexes and arrest of cells in G(1)/S-phase. Thus, our study clearly establishes NF-kappaB as a negative regulator of cell cycle through transcriptional repression of cyclin E.


Assuntos
Ciclina E/biossíntese , Regulação da Expressão Gênica , Sinaptotagmina I/biossíntese , Catálise , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA/química , Vetores Genéticos , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/metabolismo
9.
FEBS Lett ; 582(7): 1111-6, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18328826

RESUMO

Chemotherapeutic agents are well known to induce growth arrest of cancerous cells by inducing DNA damage/replicational stress and engaging cellular apoptotic machinery. Our studies on hydroxyurea (HU) recognized cyclin D1 destabilization as the initiator of growth arrest at G(1)/S-phase independent of other cell cycle regulators. Cyclin D1 degradation was associated with its phosphorylation at Thr286 by glycogen synthase kinase-3beta and inactivation of Akt kinase. Overexpression of the cyclin D1(T286A) mutant, or constitutively active Akt, conferred stability to cyclin D1 and helped bypass cell cycle arrest. Thus, growth arrest by HU seems to involve destabilization of cyclin D1 in addition to its well-established role as ribonucleotide reductase inhibitor.


Assuntos
Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hidroxiureia/farmacologia , Animais , Linhagem Celular , Replicação do DNA , Fase G1 , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S
10.
Biochem J ; 401(1): 247-56, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16939421

RESUMO

The HBx (X protein of hepatitis B virus) is a promiscuous transactivator implicated to play a key role in hepatocellular carcinoma. However, HBx-regulated molecular events leading to deregulation of cell cycle or establishment of a permissive environment for hepatocarcinogenesis are not fully understood. Our cell culture-based studies suggested that HBx had a profound effect on cell cycle progression even in the absence of serum. HBx presence led to an early and sustained level of cyclin-cdk2 complex during the cell cycle combined with increased protein kinase activity of cdk2 heralding an early proliferative signal. The increased cdk2 activity also led to an early proteasomal degradation of p27(Kip1) that could be reversed by HBx-specific RNA interference and blocked by a chemical inhibitor of cdk2 or the T187A mutant of p27. Further, our co-immunoprecipitation and in vitro binding studies with recombinant proteins suggested a direct interaction between HBx and the cyclin E/A-cdk2 complex. Interference with different signalling cascades known to be activated by HBx suggested a constitutive requirement of Src kinases for the association of HBx with these complexes. Notably, the HBx mutant that did not interact with cyclin E/A failed to destabilize p27(Kip1) or deregulate the cell cycle. Thus HBx appears to deregulate the cell cycle by interacting with the key cell cycle regulators independent of its well-established role in transactivation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Bases , Carcinoma Hepatocelular , Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27 , Primers do DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Neoplasias Hepáticas , Fosforilação , Proteínas Recombinantes/metabolismo , Reticulócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases Associadas a Fase S , Transativadores , Fatores de Transcrição/genética
11.
Virus Res ; 105(2): 157-65, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15351489

RESUMO

The X protein of hepatitis B virus or HBx is a multifunctional regulatory protein that carries the fame of a promiscuous transactivator. Although, the N-terminal 'A' region of HBx (amino acids 1-20) is the most conserved region among mammalian hepadnavirus genomes, it has been found to be dispensable for transactivation function [Proc. Natl. Acad. Sci. U.S.A. 93, 1996, 5647]. To elucidate its biological role, DNA sequence corresponding to the A region of X gene was amplified by polymerase chain reaction and cloned as a 72 base pair HBx mutant X17. In order to augment the intracellular biochemical stability of the expressed protein, the monomeric X17 was multimerized and 2-10 units long tandem repeats of the A region (X17-n) were cloned in a mammalian expression vector. Expression of the X17 constructs was confirmed by in vitro transcription and translation, as well as by RT-PCR after transfection in hepatoma cells. The function of X17 was investigated using the chloramphenicol acetyl transferase reporter constructs of viral (RSV-LTR, HIV1-LTR and HBx) and cellular gene promoters (c-Jun and epidermal growth receptor). Not only did the X17 multimers inhibit the HBx-mediated transactivation of all the reporter genes, but also their basal activities. The inhibition was dependent on the amount of X17 plasmid transfected in cells as well as on the number of repeat units present in the X17 expression vectors. Further, the X17-related inhibition of transactivation was not a cytotoxic effect. Thus, our data suggests that the N-terminal 'A' domain of HBx has a negative regulatory function.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/química , Estrutura Terciária de Proteína , Proteínas Repressoras/fisiologia , Transativadores/química , Transativadores/fisiologia , Animais , Fusão Gênica Artificial , Células CHO , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Clonagem Molecular , Cricetinae , Expressão Gênica , Genes Reporter , Genes Virais , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/análise , RNA Mensageiro/isolamento & purificação , RNA Viral/análise , RNA Viral/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Sequências de Repetição em Tandem , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA