Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927505

RESUMO

This study aims to determine the effectiveness of administering 80 ppm nitric oxide in reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental perfusion. Twenty-four sheep were randomized into four groups: two groups received 80 ppm NO conditioning with 90 min of cardiopulmonary bypass (CPB + NO) or 90 min of CPB and hypothermic circulatory arrest (CPB + CA + NO), while two groups received sham protocols (CPB and CPB + CA). Kidney injury was assessed using laboratory (neutrophil gelatinase-associated lipocalin, an acute kidney injury biomarker) and morphological methods (morphometric histological changes in kidney biopsy specimens). A kidney biopsy was performed 60 min after weaning from mechanical perfusion. NO did not increase the concentrations of inhaled NO2 and methemoglobin significantly. The NO-conditioning groups showed less severe kidney injury and mitochondrial dysfunction, with statistical significance in the CPB + NO group and reduced tumor necrosis factor-α expression as a trigger of apoptosis and necroptosis in renal tissue in the CPB + CA + NO group compared to the CPB + CA group. The severity of mitochondrial dysfunction in renal tissue was insignificantly lower in the NO-conditioning groups. We conclude that NO administration is safe and effective at reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental CPB.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732142

RESUMO

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Assuntos
Cardiotônicos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transdução de Sinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
3.
Life Sci ; 347: 122617, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608835

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Assuntos
Plaquetas , Traumatismo por Reperfusão Miocárdica , Fator de Ativação de Plaquetas , Fator de Crescimento Derivado de Plaquetas , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Plaquetas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia
4.
Biomedicines ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38672075

RESUMO

Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB ("CPB + NO" group) or CPB and CA ("CPB + CA + NO"). In the "CPB" and "CPB + CA" groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism.

5.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255971

RESUMO

The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is about 6% and has not decreased in recent years. The leading cause of death of these patients is ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study, it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation. There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1 alleviates myocardial ferroptosis. The roles of GSK-3ß and NOS in the regulation of ferroptosis require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis.


Assuntos
Cardiomiopatias Diabéticas , Ferroptose , Traumatismos Cardíacos , MicroRNAs , Traumatismo por Reperfusão , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Glicogênio Sintase Quinase 3 beta , Isquemia , Reperfusão , MicroRNAs/genética , Morte Celular , Miócitos Cardíacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA