Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 79: 102870, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549106

RESUMO

Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. Future research directions for developing C. glutamicum cell factories are also discussed.


Assuntos
Produtos Biológicos , Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Aminoácidos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Produtos Biológicos/metabolismo
2.
Metab Eng ; 64: 41-51, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482331

RESUMO

The functionalization of terpenes using cytochrome P450 enzymes is a versatile route to the production of useful derivatives that can be further converted to value-added products. Many terpenes are hydrophobic and volatile making their availability as a substrate for P450 enzymes significantly limited during microbial production. In this study, we developed a strategy to improve the accessibility of terpene molecules for the P450 reaction by linking terpene synthase and P450 together. As a model system, fusion proteins of 1,8-cineole synthase (CS) and P450cin were investigated and it showed an improved hydroxylation of the monoterpenoid 1,8-cineole up to 5.4-fold. Structural analysis of the CS-P450cin fusion proteins by SEC-SAXS indicated a dimer formation with preferred orientations of the active sites of the two domains. We also applied the enzyme fusion strategy to the oxidation of a sesquiterpene epi-isozizaene and the fusion enzymes significantly improved albaflavenol production in engineered E. coli. From the analysis of positive and negative examples of the fusion strategy, we proposed key factors in structure-based prediction and evaluation of fusion enzymes. Developing fusion enzymes for terpene synthase and P450 presents an efficient strategy toward oxidation of hydrophobic terpene compounds. This strategy could be widely applicable to improve the biosynthetic titer of the functionalized products from hydrophobic terpene intermediates.


Assuntos
Escherichia coli , Terpenos , Alquil e Aril Transferases , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Front Microbiol ; 11: 1742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793173

RESUMO

The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development. However, the processes by which the constituent microbes interact to form and maintain a community are not well understood. To investigate these molecular processes, we examined pairwise interactions between 11 different microbial isolates under select nutrient-rich and nutrient-limited conditions. We observed that when grown with media supplemented with 56 mM glucose, two microbial isolates were able to inhibit the growth of six other microbes. The interaction between microbes persisted even after the antagonistic microbe was removed, upon exposure to spent media. To probe the genetic basis for these antagonistic interactions, we used a barcoded transposon library in a proxy bacterium, Pseudomonas putida, to identify genes which showed enhanced sensitivity to the antagonistic factor(s) secreted by Acinetobacter sp. 02. Iron metabolism-related gene clusters in P. putida were implicated by this systems-level analysis. The supplementation of iron prevented the antagonistic interaction in the original microbial pair, supporting the hypothesis that iron limitation drives antagonistic microbial interactions between rhizobionts. We conclude that rhizobiome community composition is influenced by competition for limiting nutrients, with implications for growth and development of the plant.

4.
FEMS Microbiol Lett ; 363(20)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664055

RESUMO

The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulated genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. This study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Alcanos/metabolismo , Transporte Biológico/genética , Dodecanol/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Membrana Transportadoras/genética , Acetatos/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Poluição por Petróleo , Análise de Sequência de DNA
5.
ACS Synth Biol ; 5(12): 1485-1496, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27403844

RESUMO

We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.


Assuntos
2-Propanol/metabolismo , Escherichia coli/metabolismo , Engenharia Genética/métodos , Sarina/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xanthobacter/genética , Xanthobacter/metabolismo
6.
PLoS Comput Biol ; 10(9): e1003827, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25188426

RESUMO

The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species.


Assuntos
Isótopos de Carbono/metabolismo , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Peptídeos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/química , Biologia Computacional , Desulfovibrio vulgaris/metabolismo , Mathanococcus/metabolismo , Consórcios Microbianos , Peptídeos/análise , Peptídeos/química
7.
Plant Physiol ; 159(1): 12-26, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430844

RESUMO

The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteoma/isolamento & purificação , Apirase/genética , Apirase/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Centrifugação com Gradiente de Concentração , Cromatografia Líquida , Ensaios Enzimáticos , Genes de Plantas , Teste de Complementação Genética , Glicosilação , Complexo de Golgi/ultraestrutura , Immunoblotting , Membranas Intracelulares/fisiologia , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Células Vegetais/enzimologia , Células Vegetais/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(11): 4967-72, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194787

RESUMO

The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.


Assuntos
Chaperonina com TCP-1/química , Microscopia Crioeletrônica , Subunidades Proteicas/química , Sequência de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Eletricidade Estática , Propriedades de Superfície
9.
J Bacteriol ; 189(3): 940-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17114264

RESUMO

Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both gas chromatography-mass spectrometry (GC-MS) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) indicate the lack of an oxidatively functional tricarboxylic acid (TCA) cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80% of the lactate was converted to acetate and that the reactions involved are the primary route of energy production [NAD(P)H and ATP production]. Independently of the TCA cycle, direct cleavage of acetyl coenzyme A to CO and 5,10-methyl tetrahydrofuran also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or the reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports [the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase]. These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris and also demonstrate that FT-ICR MS is a powerful tool for isotopomer analysis, overcoming the problems with both GC-MS and nuclear magnetic resonance spectroscopy.


Assuntos
Desulfovibrio vulgaris/metabolismo , Análise de Fourier , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Acetilcoenzima A/metabolismo , Isótopos de Carbono , Ciclo do Ácido Cítrico/fisiologia , Ciclotrons , Desulfovibrio vulgaris/crescimento & desenvolvimento , Cinética , Espectrometria de Massas/instrumentação , Redes e Vias Metabólicas , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA