Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38847212

RESUMO

AIM AND BACKGROUND: Genotyping of H. pylori strains was identified on formalin-fixed paraffin wax-embedded tissue (FFPE) sections and correlated with severity grades of gastric mucosal pathologies in biopsies from upper gastrointestinal (UGI) tract from Guwahati, Assam. MATERIALS AND METHODS: In total, 168 gastric biopsies collected from patients with UGI symptoms underwent histological evaluation as per the updated Sydney system. RESULT: H. pylori-like organisms were identified with Warthin and Starry stain, and virulent genes were amplified using polymerase chain reaction (PCR) from genomic DNA extracted from FFPE sections by using QIAamp® DNA FFPE Tissue Kit. Histological examination identified H. pylori-like organisms in 100 biopsies, of which 96 were urease + ve. The prevalence of H. pylori infection was high in age groups 71-80 (88.8%) as compared to other age groups, and it was higher in females (78.9%) when compared to males. The prevalence of virulent genes in biopsies was 88.5% cagA and vacA s1m1, 31.2% iceA1, 32.2% iceA2, and 85.2% babA2. The histological parameters mononuclear cell infiltrate (P = 0.04) and atrophy (P = 0.03), showed statistically significant association with iceA2 and intestinal metaplasia with cagA (P = 0.01) vacAs1m1 (P = 0.01) and babA (P = 0.02) genotypes. Gastric erosion due to H. pylori infection and atrophy showed a significant association. A high bacterial density score was seen with the virulent genotypes. CONCLUSION: Our work reports for the first time a high prevalence (88.5%) of H. pylori cagA vacA s1m1 genotype in Guwahati, Assam. Association of gastric atrophy and intestinal metaplasia was seen with virulent genotypes. Results show the effectiveness of the FFPE kit for DNA extraction in remote areas where transportation and storage of biopsies are otherwise difficult.

2.
Mol Med ; 29(1): 51, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038107

RESUMO

BACKGROUND: Helicobacter pylori is a key agent for causing gastric complications linked with gastric disorders. In response to infection, host cells stimulate autophagy to maintain cellular homeostasis. However, H. pylori have evolved the ability to usurp the host's autophagic machinery. High mobility group box1 (HMGB1), an alarmin molecule is a regulator of autophagy and its expression is augmented during infection and gastric cancer. Therefore, this study aims to explore the role of glycyrrhizin (a known inhibitor of HMGB1) in autophagy during H. pylori infection. MAIN METHODS: Human gastric cancer (AGS) cells were infected with the H. pylori SS1 strain and further treatment was done with glycyrrhizin. Western blot was used to examine the expression of autophagy proteins. Autophagy and lysosomal activity were monitored by fluorescence assays. A knockdown of HMGB1 was performed to verify the effect of glycyrrhizin. H. pylori infection in in vivo mice model was established and the effect of glycyrrhizin treatment was studied. RESULTS: The autophagy-lysosomal pathway was impaired due to an increase in lysosomal membrane permeabilization during H. pylori infection in AGS cells. Subsequently, glycyrrhizin treatment restored the lysosomal membrane integrity. The recovered lysosomal function enhanced autolysosome formation and concomitantly attenuated the intracellular H. pylori growth by eliminating the pathogenic niche. Additionally, glycyrrhizin treatment inhibited inflammation and improved gastric tissue damage in mice. CONCLUSION: This study showed that inhibiting HMGB1 restored lysosomal activity to ameliorate H. pylori infection. It also demonstrated the potential of glycyrrhizin as an antibacterial agent to address the problem of antimicrobial resistance.


Assuntos
Proteína HMGB1 , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Camundongos , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Ácido Glicirrízico/metabolismo , Helicobacter pylori/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Proteína HMGB1/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Autofagia
3.
Gut Pathog ; 15(1): 7, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782212

RESUMO

BACKGROUND: Eradication of Helicobacter pylori provides the most effective treatment for gastroduodenal diseases caused by H. pylori infection. Clarithromycin, a member of the macrolide family, still remains the most important antibiotic used in H. pylori eradication treatment. But the increasing prevalence of clarithromycin resistant H. pylori strains due to point mutations in the V region of the 23S rRNA, poses a great threat in treating the ailing patients. So, we aimed for PCR-mediated rapid detection of the point mutation at 2143 position of 23S rRNA gene in H. pylori that is relevant to clarithromycin resistance from culture and simultaneously from biopsy specimens to avoid the empirical treatment. RESULTS: Newly developed PCR assay using DNA of pure culture detected point mutation in 23S rRNA gene in 21 (8.04%) of 261 clinical strains tested. The agar dilution method showed that all these 21 strains were resistant to clarithromycin indicating the perfect match of the PCR based results. Additionally, the sequencing study also identified the A to G mutation at 2143 position in 23S rRNA gene of the resistant strains only. Consequently, the newly developed Nested-ASP-PCR dealing directly with 50 biopsy specimens demonstrated 100% sensitivity and specificity with the findings of agar dilution method taken as Gold standard. Bioinformatics based analysis such as accessibility analysis and dot plot clearly stated that the base pairing probability has increased due to mutation. Computational studies revealed that the point mutation confers more stability in secondary structure due to conversion of loop to stem. Furthermore, interaction studies showed binding affinity of the CLR to the mutant type is weaker than that to the wild type. CONCLUSION: This assay outlines a rapid, sensitive and simple approach to identify point mutation that confers clarithromycin resistance as well as clarithromycin sensitive strains, providing rapid initiation of effective antibiotic treatment. Additionally, it is simple to adopt for hospital based diagnostic laboratories to evaluate the degree of regional clarithromycin resistance from biopsy specimens itself. Furthermore, in silico studies provide evidence or a signal that the prevalence of clarithromycin resistance may rise in the near future as a result of this point mutation.

4.
Food Funct ; 13(19): 10083-10095, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36094160

RESUMO

Non-typhoidal Salmonella serotypes are well adapted to utilize the inflammation for colonization in the mammalian gut mucosa and cause loss of the integrity of the epithelial barrier in the mammalian intestine. The present study assessed the protective efficacy of fish oil-in-water nanoemulsion, compared to the conventional emulsion, towards the intestinal epithelial barrier against invasive infection of Salmonella enterica serovar Typhimurium strain SL1344 in an in vivo streptomycin-treated mouse model. Non-typhoidal Salmonella enterica serovar Typhimurium strain SL1344 expresses its invasiveness by creating extreme inflammatory assault in the mammalian host lumen via its repertoire of secretory or membrane-bound proteins. Prophylactic treatment of ω-3 polyunsaturated fatty acid-rich fish oil nanoemulsion not only reduced the inflammatory markers by 4-5 fold against the established infection but also retained the gut barrier efficiency as shown by FITC-dextran permeability assay. Though the conventional emulsion also showed similar trends, the efficacy was significantly better with nanoemulsion treatment but neither the nanoemulsion nor conventional emulsion caused any significant change in the microbial colonization of the murine gut mucosa. Mechanistic assessment of the nanoemulsion against inflammation and invasion across the Caco-2 cell monolayer revealed that nanoemulsion treatment protected the expression of Zona occludens-1 along the tight junction, almost by 3-fold as compared to the infected cell monolayer. Such protection was evinced by the trans-epithelial electrical resistance value and the FITC-dextran permeability analysis as well. Fish oil nanoemulsion treatment has also shown significant reduction in pro-inflammatory cytokine expression by the Salmonella strain SL1344 infected Caco-2 cell monolayer. Conventional emulsion also showed distinct protection, but the nanoemulsion offered better protection at the same dosage of fish oil, probably due to its better bioavailability. The results proved that fish oil-loaded nanoemulsion can be efficacious towards maintaining the barrier function and protecting against systemic bacteremia during invasive intestinal infection.


Assuntos
Mucosite , Salmonella enterica , Animais , Células CACO-2 , Citocinas/metabolismo , Dextranos , Emulsões/metabolismo , Ácidos Graxos Insaturados/metabolismo , Óleos de Peixe/metabolismo , Óleos de Peixe/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mamíferos , Camundongos , Salmonella typhimurium , Estreptomicina/metabolismo , Água/metabolismo
5.
Asian Pac J Cancer Prev ; 23(1): 61-70, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092372

RESUMO

BACKGROUND: The current disadvantages (high cost, toxicity, resistance) of chemotherapy for gastric cancer opted people for alternative therapy from natural source. Curcumin (natural product) possess multiple biological activities but low bio-availability limits their uses as therapeutic. The Nano-formulation of curcumin increased the bioavailability and productivity of anti-cancer and anti-bacterial properties. The present study was initiated to determine the anti-cancer and anti-bacterial effect of Nano curcumin against gastric cancer and H. pylori. METHODS: Curcumin loaded PLGA nanoparticles (CUR-NPs) was prepared by single emulsion solvent evaporation method. The MIC were determined using agar dilution method to find the anti-H. Pylori activity of Nano curcumin. The cytotoxicity of Nano curcumin was evaluated by MTT assay and the apoptotic effect (cell cycle arrest and morphology change) was shown by PI staining and microscopy. RESULTS: The MIC of nanocurcumin and curcumin for all four H. pylori strains were 8 µg/ml and 16 µg/ml respectively. The inhibition rate of gastric cancer cells after treatment with curcumin was increased from 6% to 67% for 24h, from 8% to 75% for 48h, from 10% to 83% for 72h. In case of nanocurcumin, the inhibition rate increased from 7% to 69% for 24h, 11% to 87% for 48h and 16% to 97% for 72h. The IC50 of curcumin and Nano-curcumin were 24.20 µM and 18.78 µM respectively for 72 h. The population of cells in sub-G0 population increased from 4.1% in the control group to 24.5% and 57.8% when treated with curcumin and nanocurcumin respectively. After 72h of treatment with nanocurcumin, the apoptotic cells population increased as compared to native curcumin treated cells. CONCLUSION: The Nano curcumin might be used as a potential therapeutics against gastric cancer and H. Pylori. There is need of further in vivo study in order to validate CUR-NPs activity.


Assuntos
Antibacterianos/farmacocinética , Antineoplásicos/farmacocinética , Curcumina/administração & dosagem , Helicobacter pylori/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
Microbiology (Reading) ; 167(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550064

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a major pathogen of acute watery diarrhoea. The pathogenicity of ETEC is linked to adherence to the small intestine by colonization factors (CFs) and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). CS6 is one of the most common CFs in our region and worldwide. Iron availability functions as an environmental cue for enteropathogenic bacteria, signalling arrival within the human host. Therefore, iron could modify the expression of CS6 in the intestine. The objective of this study was to determine the effect of iron availability on CS6 expression in ETEC. This would help in understanding the importance of iron during ETEC pathogenesis. ETEC strain harbouring CS6 was cultured under increasing concentrations of iron salt to assess the effect on CS6 RNA expression by quantitative RT-PCR, protein expression by ELISA, promoter activity by ß-galactosidase activity, and epithelial adhesion on HT-29 cells. RNA expression of CS6 was maximum in presence of 0.2 mM iron (II) salt. The expression increased by 50-fold, which also reduced under iron-chelation conditions and an increased iron concentration of 0.4 mM or more. The surface expression of CS6 also increased by 60-fold in presence of 0.2 mM iron. The upregulation of CS6 promoter activity by 25-fold under this experimental condition was in accordance with the induction of CS6 RNA and protein. This increased CS6 expression was independent of ETEC strains. Bacterial adhesion to HT-29 epithelial cells was also enhanced by five-fold in the presence of 0.2 mM iron salt. These findings suggest that CS6 expression is dependent on iron concentration. However, with further increases in iron concentration beyond 0.2 mM CS6 expression is decreased, suggesting that there might be a strong regulatory mechanism for CS6 expression under different iron concentrations.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Enterotoxigênica/genética , Enterotoxinas , Proteínas de Escherichia coli/genética , Humanos , Ferro
7.
Curr Microbiol ; 78(10): 3720-3732, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468852

RESUMO

Infection with Helicobacter pylori (H. pylori) leads to a fork in the road situation where it is critical and complex to judge the fate of the cell. We propose for the first time an in silico representation of a protein level network model that can unfold the mystery behind the cell fate decision between inflammation or cell proliferation or cell death. Upon infection TNF inducible protein α (Tip α) is internalised after binding with the cell surface receptor Nucleolin which is overexpressed on the cell surface thereby activating the Ras pathway. Tip α, Nucleolin and Ras decides the cell fate for apoptosis or abnormal cell proliferation along with ulcers in the gastric tract, hence we term it as the "death triad", which otherwise triggers the inflammatory pathway through downstream signalling of NF-κß. A series of proteins involved in the signalling cascade are portrayed through compartmentalization of the bacteria and the gut wall. The depicted network works synchronously toward an overarching goal of deciding between apoptosis or inflammation or proliferation. The model has been validated by simulating it with existing transcriptomic data along with clinical findings from patients infected with H. pylori across different regions in India. The results clearly indicate that for a short period of time there is increased binding of Tip α to Nucleolin and the receptor starts to saturate. This increases the tenacity of binding and the cell triggers an inflammatory cascade reaction which involves proinflammatory cytokines such as TNF α thereby progressing to inflammation by activating NF-κß downstream. On the other hand, Ras involved in interaction with nucleolin can be present both in its activated or inactivated state. Binding of Tip α as a monomer leads to desensitization of Nucleolin leading to cell survival and proliferation.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter , Helicobacter pylori , Proteínas ras/metabolismo , Apoptose , Mucosa Gástrica , Humanos , Inflamação , Fosfoproteínas , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa , Nucleolina
8.
3 Biotech ; 11(5): 246, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968589

RESUMO

Helicobacter pylori (H. pylori) is known to cause several gastroduodenal diseases including chronic Gastritis, Peptic Ulcer disease and Gastric Cancer. Virulent genes of H. pylori like cagA, vacA are known to be responsible for the disease pathogenesis. However, these virulence genes are not always found to be associated with disease outcome in all populations around the world. Tumor necrosis factor alpha inducing protein tipα is a newly discovered virulence gene of H. pylori and is an inducer of certain cytokines and chemokines that are responsible for causing stomach cancer. Therefore, we conducted a study, which aims to find the prevalence of tipα gene in the Indian patients with gastroduodenal symptoms, and its association with H. pylori related gastroduodenal diseases. 267 clinical H. pylori isolates are included in our study for finding the prevalence of tipα gene and its association with cagA and vacA gene using PCR assay. The current study shows that the prevalence rate of tipα gene is 59.9%. Our study has found a significant association (p < 0.05) of tipα gene with Non Ulcer Dyspepsia (NUD) and an association of cagA and vacAs1m1 with Gastritis and Duodenal Ulcer. Our study demonstrates for the first time the presence of tipα as virulence factor of H. pylori strain in Indian population isolated from patients suffering from gastroduodenal diseases. Further, tipα is significantly associated with NUD but not with other gastroduodenal diseases in India.

9.
Methods Mol Biol ; 2283: 131-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765316

RESUMO

Infection with Helicobacter pylori (H. pylori) is of great distress because of its vital role in the pathogenesis of chronic gastritis, peptic ulcers, and in the multi-step carcinogenic process of gastric cancer. The increasing antibiotic resistance pattern of H. pylori worldwide has prompted the World Health Organization to put this organism in the priority pathogens list. To study the disease biology, evaluation of drugs, treatment outcome and to come up with probable vaccination strategies, competent animal models that reproduce the signature of human infection are essential. Initial reports about animal colonization with H. pylori have shown significant heterogeneity, to such an extent that Barry Marshall, Nobel laureate for the discovery of H. pylori , infected himself with the bacterium to show its involvement in acute gastric illness. A paradigm-shift discovery of the H. pylori mouse-adapted strain SS1 has opened the avenues of research regarding the organism and its pathogenicity. Although the mouse model of H. pylori infection is being utilized all over the world, there are certain issues that need awareness and specific information to achieve successful, consistent colonization with symptoms resembling human. This chapter details an established and reliable protocol for the development of a competent mouse model for H. pylori infection leading to various gastro-intestinal diseases.


Assuntos
Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gerenciamento Clínico , Modelos Animais de Doenças , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/classificação , Helicobacter pylori/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Úlcera Péptica/microbiologia , Úlcera Péptica/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
10.
J Infect Public Health ; 14(1): 131-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234410

RESUMO

BACKGROUND: Carbapenem are the last-line antibiotic, defence against Gram-negative extended spectrum ß-lactamases producers (ESBLs). Carbapenem resistance Enterobacteriaceae especially Carbapenem resistant-Klebsiella pneumoniae (CR-KP) is recognized as one of the well-known public health problem, which is increasingly being reported around the world. The present study was focused to analyse the prevalence and characterization of antibiotic resistance K. pneumoniae in centre region of Tamil Nadu, India. METHODOLOGY: Totally 145 suspected K. pneumoniae isolates [Urine, Pus, Sputum, Blood and Biopsy] obtained from hospitals of Central South India. The isolates were subjected to biochemical and molecular identification technique, following with antibiotic resistance pattern by standard antibiotic sensitivity test. Multidrug resistance (MDR) with ß-lactamase producing Carbapenem resistant K. pneumoniae (CR-KP) strains were screened by classical sensitivity method and also drug resistance encoded gene. Also, molecular typing of the MDR strains were characterized by Pulsed-Field Gel Electrophoresis (PFGE). Further, the outer membrane protein (OmpK35 and 36) related Carbapenem resistance were characterized. RESULTS: Totally, 61% of isolates were confirmed as K. pneumoniae, 75 % of isolates were MDR including 58% carbapenem and 97% ESBL antibiotics and grouped into 17 distinct resistant patterns. The MDR KP isolates shows positive for blaCTXM-1 (92 %) gene followed by blaSHV (43 %), blaTEM (36 %), blaNDM-1 (26 %), blaGES (20 %) and blaIMP-1 (8 %). Moreover, 62 % CR-KP isolates loses OmpK36 and 33% isolates loses OmpK35. CONCLUSIONS: Loss of OmpK36 were highly an influence the cefoxitin and carbapenem resistance. Sixteen different PFGE patterns have been observed among the 18 MDR isolates. Eventually, ESBL as well as CR-KP were diverse in genetic makeup and often associated with hyper virulence hvKP should be of serious concern.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Índia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
11.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32975237

RESUMO

Alternate remedies with natural products provides unlimited opportunities for new drug development. These can be either as pure compounds or as standardized set of compounds. The phytochemicals and secondary metabolites are in great demand for screening bioactive compounds and plays an important role towards drug development. Natural products have many advantages over to synthetic chemical drugs. Helicobacter pylori (H. pylori) a Gram-negative bacteria has been classified as Class I carcinogen by World Health Organization in 1994. Current treatment regimens for H. pylori is 'triple therapy' administrated for two weeks which includes a combination of two antibiotics like Amoxicillin and Clarithromycin and a proton pump inhibitor (PPI) like Lansoprazole, and for 'quadruple therapy' in addition to antibiotics and a PPI, Bismuth is used. Antibiotic resistance can be named as the main factor for failure of treatment of H. pylori infection. The need of the hour is to develop a herbal remedy that could combat the growth of H. pylori. Probiotics can also be used as 'feasible' tool for H. pylori infection management. Present review is an attempt to briefly discuss about the pathogenicity, genetic predisposition, perturbation of gut microbiota due to antibiotic treatment and restoration of healthy gut microbiota with phytochemicals and probiotics.


Assuntos
Produtos Biológicos/uso terapêutico , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Compostos Fitoquímicos/uso terapêutico , Probióticos/uso terapêutico , Amoxicilina/efeitos adversos , Antibacterianos/efeitos adversos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Bismuto/efeitos adversos , Claritromicina/efeitos adversos , Quimioterapia Combinada , Disbiose/induzido quimicamente , Disbiose/microbiologia , Disbiose/patologia , Microbioma Gastrointestinal/fisiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Humanos , Lansoprazol/efeitos adversos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Plantas Medicinais/química
12.
Cell Microbiol ; 20(9): e12859, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749704

RESUMO

Aberrant expression of microRNAs (miRNAs) is associated with tumour progression, extracellular matrix remodelling, and cell proliferation. miRNAs modulate host gene expression during infection by pathogens such as Helicobacter pylori, which is associated with varying degrees of gastric pathology. In order to gain insight into the regulation of gene expression by miRNAs during H. pylori infection of gastric epithelial cells and its likely downstream consequences, we analysed the transcriptomes and miRnomes of AGS cells infected with H. pylori. In silico analysis of miRNA-mRNA interactions suggested that miR-29b-1-5p was a likely regulator of pathways associated with gastric epithelial cell pathology. We validated PH domain leucine rich phosphatase 1 (PHLPP1), a negative regulator of the Akt signalling pathway, as a target of miR-29b-1-5p. In an in vivo mouse model, we observed that infection with H. pylori was associated with upregulation of miR-29b-1-5p and downregulation of PHLPP1. Transfection with either a mimic or an inhibitor of miR-29b-1-5p confirmed that downregulation of PHLPP1 upregulates Akt-dependent NF-κB signalling leading to activation of matrix metalloproteinases 2 and 9, players in the degradation of extracellular matrix during H. pylori infection. The secreted antigen HP0175 was associated with upregulation of miR-29b-1-5p, regulation of metalloproteinase activity, and migration of AGS cells. Our study suggests that targeting the miR-29b-1-5p/PHLPP1 signalling axis could be a potential host-directed approach for regulating the outcome of H. pylori infection.


Assuntos
Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Transdução de Sinais
13.
Nucleic Acids Res ; 44(7): 3288-303, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27001508

RESUMO

DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue inH. pylori, the question arises as to whether HpDnaB helicase is loaded at theHp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.


Assuntos
Proteínas de Bactérias/metabolismo , DnaB Helicases/metabolismo , Helicobacter pylori/enzimologia , Proteínas de Bactérias/química , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/química , Helicobacter pylori/metabolismo , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Multimerização Proteica
14.
World J Gastroenterol ; 15(9): 1105-12, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19266604

RESUMO

AIM: To investigate the changing pattern of different histological parameters occurring in the stomach tissue of Helicobacter pylori (H pylori) infected tribal populations and duodenal ulcer patients among ethnic Bengalis and correlation of the genotypes of H pylori with different histological parameters. METHODS: One hundred and twelve adult individuals were enrolled into this study between 2002 and 2004. Among them, 72 had clinical features of duodenal ulcer (DU) from ethnic Bengali population and 40 were asymptomatic ethnic tribals. Endoscopic gastric biopsy samples were processed for histology, genotyping and rapid urease test. Histologically, haematoxylin and eosin staining was applied to assess the pathomorphological changes and a modified Giemsa staining was used for better detection of H pylori. For intestinal metaplasia, special stainings, i.e. Alcian blue periodic acid-Schiff and high iron diamine-Alcian blue staining, were performed. PCR was performed on bacterial DNA to characterize the presence or absence of virulence-associated genes, like cagA, and distribution of different alleles of vacA and iceA. RESULTS: Intraglandular neutrophil infiltration, a hallmark of activity of gastritis, was present in 34 (94%) of tribals (TRs) and 42 (84%) of DU individuals infected with H pylori. Lymphoid follicles and aggregates, which are important landmarks in H pylori infection, were positive amongst 15 (41%) of TRs and 20 (40%) of DU subjects. Atrophic changes were observed in 60% and 27.7%, respectively, among DU cases and tribals (P > 0.003). Metaplastic changes were detected in low numbers in both groups. Moderate to severe density distribution of H pylori in the gastric mucosa was 63% among TRs, whereas it was 62% in DU subjects. There were no significant differences in the distribution of virulence-associated genes like cagA, vacA and iceA of H pylori strains carried by these two populations. CONCLUSION: Our study showed almost similar distribution of inflammatory cells among asymptomatic tribals and DU Bengali patients. Interestingly, the tribal population are free from any clinical symptoms despite evidence of active histologic gastritis and infection with H pylori strains carrying similar virulence markers as of strains isolated from patients with DU. There was an increased cellular response, especially in terms of neutrophil infiltration, but much lower risk of developing atrophy and metaplastic changes among the tribal population.


Assuntos
Úlcera Duodenal/patologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori , Atrofia , Primers do DNA , Diagnóstico Diferencial , Etnicidade , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Índia , Linfócitos/patologia , Reação em Cadeia da Polimerase
15.
Cell Microbiol ; 10(12): 2520-37, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18717821

RESUMO

Cathelicidin (hCAP-18/LL-37) and beta-defensin 1 (HBD-1) are human antimicrobial peptides (AMPs) with high basal expression levels, which form the first line of host defence against infections over the epithelial surfaces. The antimicrobial functions owe to their direct microbicidal effects as well as the immunomodulatory role. Pathogenic microorganisms have developed multiple modalities including transcriptional repression to combat this arm of the host immune response. The precise mechanisms and the pathogen-derived molecules responsible for transcriptional downregulation remain unknown. Here, we have shown that enteric pathogens suppress LL-37 and HBD-1 expression in the intestinal epithelial cells (IECs) with Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) exerting the most dramatic effects. Cholera toxin (CT) and labile toxin (LT), the major virulence proteins of V. cholerae and ETEC, respectively, are predominantly responsible for these effects, both in vitro and in vivo. CT transcriptionally downregulates the AMPs by activating several intracellular signalling pathways involving protein kinase A (PKA), ERK MAPKinase and Cox-2 downstream of cAMP accumulation and inducible cAMP early repressor (ICER) may mediate this role of CT, at least in part. This is the first report to show transcriptional repression of the AMPs through the activation of cellular signal transduction pathways by well-known virulence proteins of pathogenic microorganisms.


Assuntos
Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Toxinas Bacterianas/toxicidade , Toxina da Cólera/toxicidade , Enterotoxinas/toxicidade , Células Epiteliais/imunologia , Proteínas de Escherichia coli/toxicidade , beta-Defensinas/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/biossíntese , Células CACO-2 , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Humanos , beta-Defensinas/biossíntese , Catelicidinas
16.
J Gastroenterol Hepatol ; 20(8): 1253-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16048575

RESUMO

BACKGROUND: Efficient and accurate detection of Helicobacter pylori infection as well as identification of virulence-associated alleles are important for the treatment of gastroduodenal diseases caused by this gastric pathogen. The present study was performed to test the efficiency of gastric juice polymerase chain reaction (PCR) method for the rapid detection of H. pylori infection and to determine the bacterial genotypes without the need for culture, which is often not feasible especially in developing countries. METHODS: DNA was extracted from gastric juice samples collected from 45 subjects and was used to amplify urease B gene (ureB) for H. pylori. Results obtained from this method were further confirmed by rapid urease test (RUT), histology and culture. Genotypes of the infected strains predicted from gastric juice PCR were compared to the genotype data obtained from the isolated strains. RESULTS: Among 45 cases, 32 were positive by RUT, 37 by histological examination, 25 by gastric juice PCR method, while culture yielded positive results for 19 samples. Except for one case, all the 19 culture-positive strains gave the same genotype with the gastric juice PCR result. It was found that the gastric juice PCR is more efficient for detection of multiple-strain infection as compared to genotype data obtained from strains isolated as pooled culture. CONCLUSIONS: This moderately sensitive technique could be employed with good efficiency, particularly in cases where it is difficult to obtain biopsy. Moreover, with this method bacterial genotype could be obtained.


Assuntos
DNA Bacteriano/análise , Suco Gástrico/microbiologia , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/genética , Reação em Cadeia da Polimerase/métodos , Bangladesh/etnologia , DNA Bacteriano/química , Feminino , Gastrite/microbiologia , Gastrite/patologia , Genótipo , Infecções por Helicobacter/etnologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA