Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Reprod Open ; 2024(2): hoae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449521

RESUMO

STUDY QUESTION: Twenty years after the inception of the first fertility preservation programme for pre-pubertal boys, what are the current international practices with regard to cryopreservation of immature testicular tissue? SUMMARY ANSWER: Worldwide, testicular tissue has been cryopreserved from over 3000 boys under the age of 18 years for a variety of malignant and non-malignant indications; there is variability in practices related to eligibility, clinical assessment, storage, and funding. WHAT IS KNOWN ALREADY: For male patients receiving gonadotoxic treatment prior to puberty, testicular tissue cryopreservation may provide a method of fertility preservation. While this technique remains experimental, an increasing number of centres worldwide are cryopreserving immature testicular tissue and are approaching clinical application of methods to use this stored tissue to restore fertility. As such, standards for quality assurance and clinical care in preserving immature testicular tissue should be established. STUDY DESIGN SIZE DURATION: A detailed survey was sent to 17 centres within the recently established ORCHID-NET consortium, which offer testicular tissue cryopreservation to patients under the age of 18 years. The study encompassed 60 questions and remained open from 1 July to 1 November 2022. PARTICIPANTS/MATERIALS SETTING METHODS: Of the 17 invited centres, 16 completed the survey, with representation from Europe, Australia, and the USA. Collectively, these centres have cryopreserved testicular tissue from patients under the age of 18 years. Data are presented using descriptive analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Since the establishment of the first formal fertility preservation programme for pre-pubertal males in 2002, these 16 centres have cryopreserved tissue from 3118 patients under the age of 18 years, with both malignant (60.4%) and non-malignant (39.6%) diagnoses. All centres perform unilateral biopsies, while 6/16 sometimes perform bilateral biopsies. When cryopreserving tissue, 9/16 centres preserve fragments sized ≤5 mm3 with the remainder preserving fragments sized 6-20 mm3. Dimethylsulphoxide is commonly used as a cryoprotectant, with medium supplements varying across centres. There are variations in funding source, storage duration, and follow-up practice. Research, with consent, is conducted on stored tissue in 13/16 centres. LIMITATIONS REASONS FOR CAUTION: While this is a multi-national study, it will not encompass every centre worldwide that is cryopreserving testicular tissue from males under 18 years of age. As such, it is likely that the actual number of patients is even higher than we report. Whilst the study is likely to reflect global practice overall, it will not provide a complete picture of practices in every centre. WIDER IMPLICATIONS OF THE FINDINGS: Given the research advances, it is reasonable to suggest that cryopreserved immature testicular tissue will in the future be used clinically to restore fertility. The growing number of patients undergoing this procedure necessitates collaboration between centres to better harmonize clinical and research protocols evaluating tissue function and clinical outcomes in these patients. STUDY FUNDING/COMPETING INTERESTS: K.D. is supported by a CRUK grant (C157/A25193). R.T.M. is supported by an UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1). The MRC Centre for Reproductive Health at the University of Edinburgh is supported by MRC (MR/N022556/1). C.L.M. is funded by Kika86 and ZonMW TAS 116003002. A.M.M.v.P. is supported by ZonMW TAS 116003002. E.G. was supported by the Research Program of the Research Foundation-Flanders (G.0109.18N), Kom op tegen Kanker, the Strategic Research Program (VUB_SRP89), and the Scientific Fund Willy Gepts. J.-B.S. is supported by the Swedish Childhood Cancer Foundation (TJ2020-0026). The work of NORDFERTIL is supported by the Swedish Childhood Cancer Foundation (PR2019-0123; PR2022-0115), the Swedish Research Council (2018-03094; 2021-02107), and the Birgitta and Carl-Axel Rydbeck's Research Grant for Paediatric Research (2020-00348; 2021-00073; 2022-00317; 2023-00353). C.E is supported by the Health Department of the Basque Government (Grants 2019111068 and 2022111067) and Inocente Inocente Foundation (FII22/001). M.P.R. is funded by a Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. A.F. and N.R. received support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. K.E.O. is funded by the University of Pittsburgh Medical Center and the US National Institutes of Health HD100197. V.B-L is supported by the French National Institute of Cancer (Grant Seq21-026). Y.J. is supported by the Royal Children's Hospital Foundation and a Medical Research Future Fund MRFAR000308. E.G., N.N., S.S., C.L.M., A.M.M.v.P., C.E., R.T.M., K.D., M.P.R. are members of COST Action CA20119 (ANDRONET) supported by COST (European Cooperation in Science and Technology). The Danish Child Cancer Foundation is also thanked for financial support (C.Y.A.). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

2.
Clin Epigenetics ; 15(1): 58, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029425

RESUMO

BACKGROUND: Spermatogonial stem cell transplantation (SSCT) is proposed as a fertility therapy for childhood cancer survivors. SSCT starts with cryopreserving a testicular biopsy prior to gonadotoxic treatments such as cancer treatments. When the childhood cancer survivor reaches adulthood and desires biological children, the biopsy is thawed and SSCs are propagated in vitro and subsequently auto-transplanted back into their testis. However, culturing stress during long-term propagation can result in epigenetic changes in the SSCs, such as DNA methylation alterations, and might be inherited by future generations born after SSCT. Therefore, SSCT requires a detailed preclinical epigenetic assessment of the derived offspring before this novel cell therapy is clinically implemented. With this aim, the DNA methylation status of sperm from SSCT-derived offspring, with in vitro propagated SSCs, was investigated in a multi-generational mouse model using reduced-representation bisulfite sequencing. RESULTS: Although there were some methylation differences, they represent less than 0.5% of the total CpGs and methylated regions, in all generations. Unsupervised clustering of all samples showed no distinct grouping based on their pattern of methylation differences. After selecting the few single genes that are significantly altered in multiple generations of SSCT offspring compared to control, we validated the results with quantitative Bisulfite Sanger sequencing and RT-qPCRin various organs. Differential methylation was confirmed only for Tal2, being hypomethylated in sperm of SSCT offspring and presenting higher gene expression in ovaries of SSCT F1 offspring compared to control F1. CONCLUSIONS: We found no major differences in DNA methylation between SSCT-derived offspring and control, both in F1 and F2 sperm. The reassuring outcomes from our study are a prerequisite for promising translation of SSCT to the human situation.


Assuntos
Metilação de DNA , Espermatogônias , Criança , Humanos , Masculino , Animais , Camundongos , Adulto , Espermatogônias/metabolismo , Espermatogônias/transplante , Sêmen/metabolismo , Espermatozoides/metabolismo , Células-Tronco/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Front Cell Dev Biol ; 11: 1330830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259514

RESUMO

Introduction: Autologous transplantation of spermatogonial stem cells (SSCs) isolated from cryopreserved testicular biopsies obtained before oncological treatment could restore fertility in male childhood cancer survivors. There is a clear necessity for in vitro propagation of the limited SSCs from the testicular biopsy prior to transplantation due to limited numbers of spermatogonia in a cryopreserved testicular biopsy. Still, there is no consensus regarding their optimal culture method. Methods: We performed a systematic review and meta-analysis of studies reporting primary testicular cell cultures of human and non-human primate origin through use of Pubmed, EMBASE, and Web of Science core collection databases. Of 760 records, we included 42 articles for qualitative and quantitative analysis. To quantify in vitro spermatogonial propagation, spermatogonial colony doubling time (CDT) was calculated, which measures the increase in the number of spermatogonial colonies over time. A generalized linear mixed model analysis was used to assess the statistical effect of various culture conditions on CDT. Results: Our analysis indicates decreased CDTs, indicating faster spermatogonial propagation in cultures with a low culture temperature (32°C); with use of non-cellular matrices; use of StemPro-34 medium instead of DMEM; use of Knockout Serum Replacement; and when omitting additional growth factors in the culture medium. Discussion: The use of various methods and markers to detect the presence of spermatogonia within the reported cultures could result in detection bias, thereby potentially influencing comparability between studies. However, through use of CDT in the quantitative analysis this bias was reduced. Our results provide insight into critical culture conditions to further optimize human spermatogonial propagation in vitro, and effectively propagate and utilize these cells in a future fertility restoration therapy and restore hope of biological fatherhood for childhood cancer survivors.

4.
Front Endocrinol (Lausanne) ; 13: 850219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444616

RESUMO

Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future.


Assuntos
Bancos de Espécimes Biológicos , Preservação da Fertilidade , Criopreservação , Humanos , Masculino , Células-Tronco , Testículo
6.
J Assist Reprod Genet ; 38(6): 1571-1588, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725274

RESUMO

PURPOSE: Is it possible to eliminate metastasised chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) cells from ovarian cortex fragments by inhibition of Aurora B/C kinases (AURKB/C) without compromising ovarian tissue or follicles? METHODS: Human ovarian cortex tissue with experimentally induced tumour foci of CML, AML and primary cells of AML patients were exposed to a 24h treatment with 1 µM GSK1070916, an AURKB/C inhibitor, to eliminate malignant cells by invoking mitotic catastrophe. After treatment, the inhibitor was removed, followed by an additional culture period of 6 days to allow any remaining tumour cells to form new foci. Ovarian tissue integrity after treatment was analysed by four different assays. Appropriate controls were included in all experiments. RESULTS: Foci of metastasised CML and AML cells in ovarian cortex tissue were severely affected by a 24h ex vivo treatment with an AURKB/C inhibitor, leading to the formation of multi-nuclear syncytia and large-scale apoptosis. Ovarian tissue morphology and viability was not compromised by the treatment, as no significant difference was observed regarding the percentage of morphologically normal follicles, follicular viability, glucose uptake or in vitro growth of small follicles between ovarian cortex treated with 1 µM GSK1070916 and the control. CONCLUSION: Purging of CML/AML metastases in ovarian cortex is possible by targeting the Mitotic Catastrophe Signalling Pathway using GSK1070916 without affecting the ovarian tissue. This provides a therapeutic strategy to prevent reintroduction of leukaemia and enhances safety of autotransplantation in leukaemia patients currently considered at high risk for ovarian involvement.


Assuntos
Aurora Quinase B/genética , Aurora Quinase C/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Apoptose/efeitos dos fármacos , Compostos Aza/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Feminino , Humanos , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Mitose/efeitos dos fármacos , Mitose/genética , Metástase Neoplásica , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transplante Autólogo/normas
7.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158248

RESUMO

Autologous spermatogonial stem cell transplantation is an experimental technique aimed at restoring fertility in infertile men. Although effective in animal models, in vitro propagation of human spermatogonia prior to transplantation has proven to be difficult. A major limiting factor is endogenous somatic testicular cell overgrowth during long-term culture. This makes the culture both inefficient and necessitates highly specific cell sorting strategies in order to enrich cultured germ cell fractions prior to transplantation. Here, we employed RNA-Seq to determine cell type composition in sorted integrin alpha-6 (ITGA6+) primary human testicular cells (n = 4 donors) cultured for up to two months, using differential gene expression and cell deconvolution analyses. Our data and analyses reveal that long-term cultured ITGA6+ testicular cells are composed mainly of cells expressing markers of peritubular myoid cells, (progenitor) Leydig cells, fibroblasts and mesenchymal stromal cells and only a limited percentage of spermatogonial cells as compared to their uncultured counterparts. These findings provide valuable insights into the cell type composition of cultured human ITGA6+ testicular cells during in vitro propagation and may serve as a basis for optimizing future cell sorting strategies as well as optimizing the current human testicular cell culture system for clinical use.


Assuntos
Técnicas de Cultura de Células , Integrina alfa6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Espermatogônias/metabolismo , Testículo/citologia , Transcriptoma , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Proliferação de Células/genética , Separação Celular , Células Cultivadas , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Espermatogênese/genética , Espermatogônias/citologia , Testículo/metabolismo , Fatores de Tempo
8.
Dev Biol ; 456(1): 25-30, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421080

RESUMO

The current strategy to preserve fertility of male prepubertal cancer patients consists of cryopreservation of a testicular tissue biopsy containing spermatogonial stem cells (SSCs). While in humans, fertility restoration strategies from prepubertal testicular tissues are still under investigation and have not yet resulted in complete germ cell differentiation, in mice various studies have described production of sperm and offspring through testicular organ culture and transplantation of in vitro propagated SSCs. Organ culture has shown to be successful in generating mature spermatozoa when using testicular fragments from various mouse strains, including CD1 and C57BL/6 J. Conversely, in vitro proliferation of SSCs from C57BL/6 J mice is highly inefficient when compared to other strains such as DBA2 or hybrid mice of C57BL/6 J and DBA2 with 75% C57BL/6 J background (B6D2F2). In this study, we investigated in vitro spermatogenesis by organ culture using testicular tissue from C57BL/6 J and B6D2F2 mice. Whereas spermatogenesis was initiated and completed in C57BL/6 J fragments, it could not be effectively supported in B6D2F2 testicular tissue. While maturation of Sertoli cells and Leydig cells functionality appeared to be identical between the two strains, in B6D2F2 tissue spermatogenesis did not proceed past the spermatocyte step, followed by a rapid decline of the number of all germ cells in the fragments. This suggests that the spermatogenic potential in vitro is dependent on specialized sites in the genome and therefore the organ culture conditions suboptimal for some strains of mice.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Camundongos Endogâmicos/genética , Espermatogênese/genética , Células-Tronco Germinativas Adultas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Criopreservação , Patrimônio Genético , Masculino , Camundongos , Técnicas de Cultura de Órgãos/métodos , Maturidade Sexual , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatozoides/citologia , Testículo/citologia
9.
Hum Reprod ; 34(3): 506-518, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597012

RESUMO

STUDY QUESTION: Is it possible to eliminate metastasized cancer cells from ovarian cortex fragments prior to autotransplantation without compromising the ovarian tissue or follicles? SUMMARY ANSWER: Ex vivo pharmacological inhibition of YAP/TAZ by Verteporfin enabled us to efficiently eradicate experimentally induced small tumours, derived from leukaemia and rhabdomyosarcoma, from human ovarian tissue fragments. WHAT IS KNOWN ALREADY: Autotransplantation of ovarian tissue fragments that contain metastasized tumour cells may reintroduce the malignancy to the recipient. In order to enhance safety for the patient there is a strong need for protocols that effectively purges the ovarian tissue from malignant cells ex vivo prior to transplantation, without compromising ovarian tissue integrity. STUDY DESIGN, SIZE, DURATION: Tumour foci were experimentally induced in human ovarian cortex tissue fragments derived from at least three patients by micro-injection of cancer cell lines. Next, the tissue fragments were cultured to allow formation of metastasis-like structures followed by a 24 h ex vivo treatment with the YAP/TAZ inhibitor Verteporfin to eradicate the cancer cells. A control treatment was included in all experiments. The purged ovarian cortex fragments were cultured for an additional 6 days to allow any possibly surviving cancer cells to establish new metastatic foci. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human ovarian tissue was obtained after female-to-male sex reassignment surgery. Human rhabdomyosarcoma, leukeamia, breast cancer and Ewing's sarcoma cell lines were utilized for the induction of tumour foci. Tumour specific (immuno)histochemistry and RT-PCR were used for the detection of residual cancer cells after ex vivo treatment. Ovarian tissue and follicle integrity after exposure to Verteporfin was evaluated by histology, a follicular viability assay and a glucose uptake assay. MAIN RESULTS AND THE ROLE OF CHANCE: Metastasized rhabdomyosarcoma and leukaemia cells could be effectively purged from ovarian cortex tissue by a 24 h ex vivo treatment with Verteporfin, while breast cancer and Ewing's sarcoma did not respond to this treatment. Ovarian tissue integrity was not affected by purging, as no statistically significant difference (P > 0.05) was observed in the percentage of morphologically normal follicles, percentage of follicles with apoptotic cells, follicular viability or glucose uptake between the control treated ovarian cortex and Verteporfin treated ovarian cortex. LIMITATIONS, REASONS FOR CAUTION: Our tumour model is based on growth of human cancer cell lines. It is unclear whether these cells reflect the behaviour of malignant cells that have metastasized to the ovary during natural disease progression. Furthermore, the functionality of the ovarian tissue after ex vivo treatment requires further investigation in vivo. WIDER IMPLICATIONS OF THE FINDINGS: The results indicate that ex-vivo tumour cell purging of human ovarian cortex fragments intended for fertility preservation purposes is feasible by short-term pharmacological treatment. Effective purging of the ovarian cortex tissue enhances safety of ovarian cortex autotransplantation for the patient. This increases the likelihood that this form of fertility restoration may become an option for patients with malignancies for which ovarian cortex transplantation is currently considered unsafe. STUDY FUNDING/COMPETING INTEREST(S): Unconditional funding was received from Merck B.V. The Netherlands (Number 2016-FERT-1) and the foundation 'Radboud Oncologie Fonds' (Number KUN 00007682). The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Leucemia/cirurgia , Neoplasias Ovarianas/cirurgia , Ovário/efeitos dos fármacos , Ovário/transplante , Rabdomiossarcoma/cirurgia , Transativadores/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Células K562 , Leucemia/metabolismo , Metástase Neoplásica , Países Baixos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/transplante , Neoplasias Ovarianas/tratamento farmacológico , Ovariectomia , Segurança do Paciente , Rabdomiossarcoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transplante Autólogo , Verteporfina/farmacologia , Proteínas de Sinalização YAP , Adulto Jovem
10.
DNA Repair (Amst) ; 70: 55-66, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179733

RESUMO

Lifelong mammalian male fertility is maintained through an intricate balance between spermatogonial proliferation and differentiation. DNA damage in spermatogonia, for instance caused by chemo- or radiotherapy, can induce cell cycle arrest or germ cell apoptosis, possibly resulting in male infertility. Spermatogonia are generally more radiosensitive and prone to undergo apoptosis than somatic cells. Among spermatogonial subtypes the response to DNA damage is differentially modulated; undifferentiated spermatogonia, including the spermatogonial stem cells (SSCs), are relatively radio-resistant, whereas differentiating spermatogonia are very radiosensitive. To investigate the molecular mechanisms underlying this difference, we used an in vitro system consisting of mouse male germline stem (GS) cells that can be induced to differentiate. Using RNA-sequencing analysis, we analyzed the response of undifferentiated and differentiating GS cells to ionizing radiation (IR). At the RNA expression level, both undifferentiated and differentiating GS cells showed a very similar response to IR. Protein localization of several genes found to be involved in either spermatogonial differentiation or radiation response was investigated using mouse testis sections. For instance, we found that the transcription factor PDX1 was specifically expressed in undifferentiated spermatogonia and thus may be a novel marker for these cells. Interestingly, also at the protein level, undifferentiated GS cells showed a more pronounced upregulation of p53 in response to IR than differentiating GS cells. The higher p53 protein level in undifferentiated spermatogonia may preferentially induce cell cycle arrest, thereby giving these cells more time to repair inflicted DNA damage and increase their radio-resistance.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Espermatozoides/citologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Masculino , Camundongos , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
11.
Hum Reprod ; 33(1): 81-90, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165614

RESUMO

STUDY QUESTION: Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER: Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY: Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION: This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE: We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA: NA. LIMITATIONS, REASONS FOR CAUTION: Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.


Assuntos
Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/cirurgia , Animais , Células Cultivadas , Preservação da Fertilidade/efeitos adversos , Preservação da Fertilidade/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Estudos Prospectivos , Espermatogônias/citologia , Espermatogônias/metabolismo , Transplante de Células-Tronco/efeitos adversos , Testículo/citologia , Testículo/metabolismo
12.
Reproduction ; 154(3): 181-195, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576919

RESUMO

Spermatogenesis, starting with spermatogonial differentiation, is characterized by ongoing and dramatic alterations in composition and function of chromatin. Failure to maintain proper chromatin dynamics during spermatogenesis may lead to mutations, chromosomal aberrations or aneuploidies. When transmitted to the offspring, these can cause infertility or congenital malformations. The structural maintenance of chromosomes (SMC) 5/6 protein complex has recently been described to function in chromatin modeling and genomic integrity maintenance during spermatogonial differentiation and meiosis. Among the subunits of the SMC5/6 complex, non-SMC element 2 (NSMCE2) is an important small ubiquitin-related modifier (SUMO) ligase. NSMCE2 has been reported to be essential for mouse development, prevention of cancer and aging in adult mice and topological stress relief in human somatic cells. By using in vitro cultured primary mouse spermatogonial stem cells (SSCs), referred to as male germline stem (GS) cells, we investigated the function of NSMCE2 during spermatogonial proliferation and differentiation. We first optimized a protocol to generate genetically modified GS cell lines using CRISPR-Cas9 and generated an Nsmce2-/- GS cell line. Using this Nsmce2-/- GS cell line, we found that NSMCE2 was dispensable for proliferation, differentiation and topological stress relief in mouse GS cells. Moreover, RNA sequencing analysis demonstrated that the transcriptome was only minimally affected by the absence of NSMCE2. Only differential expression of Sgsm1 appeared highly significant, but with SGSM1 protein levels being unaffected without NSMCE2. Hence, despite the essential roles of NSMCE2 in somatic cells, chromatin integrity maintenance seems differentially regulated in the germline.


Assuntos
Diferenciação Celular , Proliferação de Células , Ligases/fisiologia , Meiose/fisiologia , Espermatogênese/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Regulação da Expressão Gênica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos DBA , Espermatogônias/metabolismo , Células-Tronco/metabolismo
13.
Hum Reprod Update ; 22(5): 561-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240817

RESUMO

BACKGROUND: Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE: The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS: We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES: Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS: SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Edição de Genes/métodos , Infertilidade Masculina/terapia , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatozoides/fisiologia , Células-Tronco Germinativas Adultas/fisiologia , Humanos , Masculino , Neoplasias/complicações , Transplante Autólogo
14.
Biomed Res Int ; 2013: 903142, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509797

RESUMO

Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation.


Assuntos
Preservação da Fertilidade/métodos , Infertilidade Masculina/terapia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Adolescente , Biópsia , Criança , Criopreservação , Metilação de DNA , Epigênese Genética , Humanos , Masculino , Neoplasias/complicações , Regiões Promotoras Genéticas , Testículo/patologia , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA