Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(3): 669-696.e10, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37806443

RESUMO

Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1ß, IL-6, TGF-ß1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1ß, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.


Assuntos
Queimaduras , Interleucina-6 , Humanos , Ratos , Masculino , Animais , Mediadores da Inflamação , Citocinas/metabolismo , Queimaduras/metabolismo , Interleucina-1beta , Inflamação , Imunidade
2.
J Invest Dermatol ; 142(11): 3093-3109.e15, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35623415

RESUMO

Because burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to preventing secondary complications. This systematic review, which includes 247 animal studies, shows the postburn response of 14 different immune cell types involved in immediate and long-term effects in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week. However, lymphocyte numbers were decreased for at least 2 weeks. In burn wound tissue, neutrophil and macrophage numbers accumulated during the first 3 weeks. Burns also altered cellular functions because we found an increased migratory potential of leukocytes, impaired antibacterial activity of neutrophils, and enhanced inflammatory mediator production by macrophages. Neutrophil surges were positively associated with burn size and were highest in rats. Altogether, this comprehensive overview of the temporal immune cell dynamics shows that unlike normal wound healing, burn injury induces a long-lasting inflammatory response. It provides a fundamental research basis to improve experimental set-ups, burn care, and outcomes.


Assuntos
Queimaduras , Ratos , Animais , Queimaduras/metabolismo , Neutrófilos , Macrófagos/metabolismo , Antibacterianos , Mediadores da Inflamação/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(44): 27528-27539, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067394

RESUMO

Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Macrófagos/imunologia , Neoplasias/terapia , Vacinação/métodos , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Gangliosídeos , Humanos , Imunogenicidade da Vacina , Leucócitos Mononucleares , Lipossomos , Macrófagos/metabolismo , Neoplasias/imunologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA