Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 176: 108170, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479813

RESUMO

Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.


Assuntos
Condicionamento Clássico/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Nicotina/administração & dosagem , Recompensa , Tabagismo/metabolismo , Animais , Ansiolíticos/farmacologia , Ácidos Araquidônicos/farmacologia , Benzodioxóis/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Condicionamento Clássico/fisiologia , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Glicerídeos/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Tabagismo/tratamento farmacológico , Tabagismo/psicologia
2.
Br J Pharmacol ; 176(24): 4773-4784, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454413

RESUMO

BACKGROUND AND PURPOSE: Both types of cannabinoid receptors-CB1 and CB2 -regulate brain functions relating to addictive drug-induced reward and relapse. CB1 receptor antagonists and CB2 receptor agonists have anti-addiction efficacy, in animal models, against a broad range of addictive drugs. Δ9 -Tetrahydrocannabivarin (Δ9 -THCV)-a cannabis constituent-acts as a CB1 antagonist and a CB2 agonist. Δ8 -Tetrahydrocannabivarin (Δ8 -THCV) is a Δ9 -THCV analogue with similar combined CB1 antagonist/CB2 agonist properties. EXPERIMENTAL APPROACH: We tested Δ8 -THCV in seven different rodent models relevant to nicotine dependence-nicotine self-administration, cue-triggered nicotine-seeking behaviour following forced abstinence, nicotine-triggered reinstatement of nicotine-seeking behaviour, acquisition of nicotine-induced conditioned place preference, anxiety-like behaviour induced by nicotine withdrawal, somatic withdrawal signs induced by nicotine withdrawal, and hyperalgesia induced by nicotine withdrawal. KEY RESULTS: Δ8 -THCV significantly attenuated intravenous nicotine self-administration and both cue-induced and nicotine-induced relapse to nicotine-seeking behaviour in rats. Δ8 -THCV also significantly attenuated nicotine-induced conditioned place preference and nicotine withdrawal in mice. CONCLUSIONS AND IMPLICATIONS: We conclude that Δ8 -THCV may have therapeutic potential for the treatment of nicotine dependence. We also suggest that tetrahydrocannabivarins should be tested for possible anti-addiction efficacy in a broader range of preclinical animal models, against other addictive drugs, and eventually in humans.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Agentes de Cessação do Hábito de Fumar/farmacologia , Síndrome de Abstinência a Substâncias/prevenção & controle , Tabagismo/prevenção & controle , Animais , Modelos Animais de Doenças , Camundongos , Nicotina/administração & dosagem , Ratos , Autoadministração , Tabagismo/metabolismo
3.
Neuropharmacology ; 148: 320-331, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567093

RESUMO

Cigarette smokers with brain damage involving the insular cortex display cessation of tobacco smoking, suggesting that this region may contribute to nicotine addiction. In the present study, we speculated that molecules in the insular cortex that are sensitive to experimental traumatic brain injury (TBI) in mice might provide leads to ameliorate nicotine addiction. Using targeted lipidomics, we found that TBI elicited substantial increases of a largely uncharacterized lipid, N-acyl-glycine, N-oleoyl-glycine (OlGly), in the insular cortex of mice. We then evaluated whether intraperitoneal administration of OlGly would alter withdrawal responses in nicotine-dependent mice as well as the rewarding effects of nicotine, as assessed in the conditioned place preference paradigm (CPP). Systemic administration of OlGly reduced mecamylamine-precipitated withdrawal responses in nicotine-dependent mice and prevented nicotine CPP. However, OlGly did not affect morphine CPP, demonstrating a degree of selectivity. Our respective in vitro and in vivo observations that OlGly activated peroxisome proliferator-activated receptor alpha (PPAR-α) and the PPAR-α antagonist GW6471 prevented the OlGly-induced reduction of nicotine CPP in mice suggests that this lipid acts as a functional PPAR-α agonist to attenuate nicotine reward. These findings raise the possibility that the long chain fatty acid amide OlGly may possess efficacy in treating nicotine addiction.


Assuntos
Glicina/análogos & derivados , Nicotina/antagonistas & inibidores , Ácidos Oleicos/farmacologia , Recompensa , Síndrome de Abstinência a Substâncias/prevenção & controle , Animais , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Glicina/antagonistas & inibidores , Glicina/farmacologia , Masculino , Mecamilamina/farmacologia , Camundongos , Nicotina/metabolismo , Nicotina/farmacologia , Ácidos Oleicos/antagonistas & inibidores , Oxazóis/farmacologia , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Tabagismo/psicologia , Tirosina/análogos & derivados , Tirosina/farmacologia
4.
Behav Brain Res ; 360: 262-269, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552947

RESUMO

The objective of the present study is to investigate the role of α4, α5, α6 or ß2 nAChR subunits in the antidepressant-like effect of bupropion. Adult male mice were treated with subcutaneous acute doses of bupropion (3 and 10 mg/kg) 30 min before the forced swim test (FST) in α4, α5, α6, or ß2 nAChR subunit knockout (KO) and wild-type (WT) mice. In addition, the effects of ß2* antagonist dihydro-ß-erythroidine (DHßE, 3 mg/kg) on antidepressant-like effects of bupropion in C57BL/6 J mice were assessed. Our results showed that baseline immobility and climbing time did not differ between KO and corresponding WT mice except for ß2 KO. Bupropion significantly decreased immobility time and increased climbing time in the α4, α6 and ß2 nAChR KO mice in comparison to WT littermates, indicating that lack of these nAChR subunits enhanced antidepressant effects of bupropion. On the contrary, the α5 nAChR subunit deletion did not alter the FST behavior in the bupropion-treated mice. Not only in the transgenic mice, bupropion also showed antidepressant-like effects in the WT mice. In addition, DHßE pretreatment before bupropion administration resulted in decreased immobility time and increased climbing time. Taken together, the present study provides evidence on the involvement of α4*, α6*, and ß2* (* indicates possible presence of other subunits) nAChRs in the antidepressant-like effects of bupropion in the FST.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Bupropiona/farmacologia , Receptores Nicotínicos/metabolismo , Natação/psicologia , Análise de Variância , Animais , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Resposta de Imobilidade Tônica/fisiologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Receptores Nicotínicos/genética
5.
Proteomics ; 18(24): e1800268, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30474317

RESUMO

Secondhand smoke remains a global concern for children's health. Epidemiological studies implicate exposure to secondhand smoke as a major risk factor for behavioral disorders, yet biological causation remains unclear. Model studies have mainly focused on secondhand smoke impacts to prenatal neurodevelopment, yet juvenile exposure represents a separate risk. Using ion mobility-enhanced data-independent mass spectrometry, the effect of juvenile secondhand smoke exposure on the prefrontal cortex, a principal part of the brain involved in behavioral control, is characterized. The produced dataset includes 800 significantly responsive proteins within the juvenile orbital frontal cortex, with 716 showing an increase in abundance. The neuroproteomic response reflects a prominent perturbation within the glutamatergic synaptic system, suggesting aberrant, disorganized excitation as observed underlying psychiatric disorders. Also disclosed are impacts to GABAergic and dopaminergic systems. Overall, the dataset provides a wealth of detail, facilitating further targeted research into the causal mechanisms underlying behavioral disorders associated with juvenile exposure to secondhand smoke and other environmental pollutants. All MS data have been deposited to the ProteomeXchange consortium with identifier PXD011744.


Assuntos
Exposição Ambiental/análise , Lobo Frontal/metabolismo , Proteoma/análise , Poluição por Fumaça de Tabaco/análise , Animais , Animais Recém-Nascidos , Feminino , Lobo Frontal/efeitos dos fármacos , Ratos
6.
Neuropharmacology ; 118: 38-45, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279662

RESUMO

Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.


Assuntos
Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , PPAR alfa/metabolismo , Tabagismo/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Anestésicos Locais/administração & dosagem , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxazóis/farmacologia , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Pirimidinas/farmacologia , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tirosina/análogos & derivados , Tirosina/farmacologia
7.
J Neurochem ; 138(6): 806-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344019

RESUMO

Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.


Assuntos
Antígenos Ly/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Antígenos Ly/genética , Química Encefálica/genética , Proteínas Ligadas por GPI , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Lobo Temporal/química , Distribuição Tecidual
8.
Alcohol Clin Exp Res ; 40(1): 62-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26727524

RESUMO

BACKGROUND: Ethanol (EtOH) and nicotine abuse are 2 leading causes of preventable mortality in the world, but little is known about the pharmacological mechanisms mediating co-abuse. Few studies have examined the interaction of the acute effects of EtOH and nicotine. Here, we examine the effects of nicotine administration on the duration of EtOH-induced loss of righting reflex (LORR) and characterize the nature of their pharmacological interactions in C57BL/6J mice. METHODS: We assessed the effects of EtOH and nicotine and the nature of their interaction in the LORR test using isobolographic analysis after acute injection in C57BL/6J male mice. Next, we examined the importance of receptor efficacy using nicotinic partial agonists varenicline and sazetidine. We evaluated the involvement of major nicotinic acetylcholine receptor (nAChR) subtypes using nicotinic antagonist mecamylamine and nicotinic α4- and α7-knockout mice. The selectivity of nicotine's actions on EtOH-induced LORR was examined by testing nicotine's effects on the hypnotic properties of ketamine and pentobarbital. We also assessed the development of tolerance after repeated nicotine exposure. Last, we assessed whether the effects of nicotine on EtOH-induced LORR extend to hypothermia and EtOH intake in the drinking in the dark (DID) paradigm. RESULTS: We found that acute nicotine injection enhances EtOH's hypnotic effects in a synergistic manner and that receptor efficacy plays an important role in this interaction. Furthermore, tolerance developed to the enhancement of EtOH's hypnotic effects by nicotine after repeated exposure of the drug. α4* and α7 nAChRs seem to play an important role in nicotine-EtOH interaction in the LORR test. In addition, the magnitude of EtOH-induced LORR enhancement by nicotine was more pronounced in C57BL/6J than DBA/2J mice. Furthermore, acute nicotine enhanced ketamine and pentobarbital hypnotic effects in the mouse. Finally, nicotine enhanced EtOH-induced hypothermia but decreased EtOH intake in the DID test. CONCLUSIONS: Our results demonstrate that nicotine synergistically enhances EtOH-induced LORR in the mouse.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Reflexo de Endireitamento/efeitos dos fármacos , Animais , Azetidinas/farmacologia , Interações Medicamentosas , Hipnóticos e Sedativos/farmacologia , Hipotermia , Ketamina/farmacologia , Mecamilamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Antagonistas Nicotínicos/farmacologia , Pentobarbital/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/genética , Vareniclina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/genética
9.
Behav Pharmacol ; 27(1): 50-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26292186

RESUMO

Several recent studies have indicated the involvement of calcium-dependent mechanisms, in particular the abundant calcium-activated kinase, calcium/calmodulin-dependent kinase II (CaMKII), in behaviors associated with nicotine dependence in mice. Behavioral and biochemical studies have shown that CaMKII is involved in acute and chronic nicotine behaviors and nicotine withdrawal; however, evidence of a role for CaMKII in nicotine reward is lacking. Thus, the goal of the current study was to examine the role of CaMKII in nicotine reward. Using pharmacological and genetic tools, we tested nicotine conditioned place preference (CPP) in C57Bl/6 mice after administration of CaMKII antagonists and in α-CaMKII wild-type (+/+) and heterozygote (±) mice. CaMKII antagonists blocked expression of nicotine CPP, and the preference score was significantly reduced in α-CaMKII ± mice compared with their +/+ counterparts. Further, we assessed CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal cortex, and hippocampus after nicotine CPP and found significant increases in CaMKII activity in the mouse VTA and NAc that were blocked by CaMKII antagonists. The findings from this study show that CaMKII mediates nicotine reward and suggest that increases in CaMKII activity in the VTA and NAc are relevant to nicotine reward behaviors.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Recompensa , Comportamento Espacial/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Alimentos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
PLoS One ; 10(9): e0137070, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355604

RESUMO

Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia) and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease) and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c.) for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and ß2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in ß2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of ß2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.


Assuntos
Mentol/uso terapêutico , Nicotina/farmacologia , Nicotina/farmacocinética , Tabagismo/tratamento farmacológico , Animais , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hipotermia Induzida , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Mentol/administração & dosagem , Mentol/farmacologia , Camundongos Endogâmicos ICR , Nicotina/sangue , Nociceptividade/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Síndrome de Abstinência a Substâncias , Fatores de Tempo , Tabagismo/complicações
11.
Neuropharmacology ; 85: 67-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24859605

RESUMO

Metabolism of nicotine to inactive cotinine by hepatic enzyme CYP2A6 is the principal pathway by which active nicotine is removed from circulation. We therefore hypothesized that inhibition of mouse CYP2A5, the ortolog of human CYP2A6, by methoxsalen (8-methoxypsoralen) alter dependence-related behaviors of nicotine in the mouse. Conditioned place preference (CPP) test was used to assess the appetitive reward-like properties and precipitated nicotine withdrawal to assess physical (somatic and hyperalgesia) and affective (anxiety-related behaviors) measures. The nicotine plasma levels were also measured with or without methoxsalen pretreatment. Methoxsalen (15 and 30 mg/kg, intraperitoneally) pretreatment enhanced nicotine-induced preference in mice (p<0.05). However, there was a lack of enhancement of nicotine in the CPP test after the highest dose of the CYP-2A5 inhibitor. Similarly to the CPP results, repeated administration of methoxsalen increased the intensity of mecamylamine-precipitated withdrawal signs. The potentiation of nicotine preference and withdrawal intensity by methoxsalen was accompanied by significant increase in nicotine plasma levels in mice (p<0.05). Finally, methoxsalen enhanced the ability of a very low dose of nicotine (0.05 mg/kg) to reverse withdrawal signs in mice undergoing spontaneous withdrawal after chronic nicotine infusion (p<0.05). In conclusion, inhibition of nicotine metabolism by methoxsalen alters the behavioral effects of nicotine in the mouse. Combining CYP2A6 inhibitors with low dose nicotine replacement therapies may have a beneficial role in smoking cessation because it will decrease the drug elimination rate and maintain plasma and brain nicotine levels.


Assuntos
Inibidores Enzimáticos/farmacologia , Metoxaleno/farmacologia , Recompensa , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Tabagismo/tratamento farmacológico , Animais , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Mecamilamina/farmacologia , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Nicotina/sangue , Nicotina/farmacologia , Agonistas Nicotínicos/sangue , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Índice de Gravidade de Doença , Síndrome de Abstinência a Substâncias/fisiopatologia , Tabagismo/fisiopatologia
12.
Mol Pharmacol ; 85(1): 50-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24107512

RESUMO

Smoking is a common addiction and a leading cause of disease. Chronic nicotine exposure is known to activate nicotinic acetylcholine receptors (nAChRs) in immune cells. We demonstrate a novel role for α4 nAChRs in the effect of nicotine on T-cell proliferation and immunity. Using cell-based sorting and proteomic analysis we define an α4 nAChR expressing helper T-cell population (α4(+)CD3(+)CD4(+)) and show that this group of cells is responsive to sustained nicotine exposure. In the circulation, spleen, bone marrow, and thymus, we find that nicotine promotes an increase in CD3(+)CD4(+) cells via its activation of the α4 nAChR and regulation of G protein subunit o, G protein regulated-inducer of neurite outgrowth, and CDC42 signaling within T cells. In particular, nicotine is found to promote a helper T cell 2 adaptive immunologic response within T cells that is absent in α4(-/-) mice. We thus present a new mechanism of α4 nAChR signaling and immune regulation in T cells, possibly accounting for the effect of smoking on the immune system.


Assuntos
Receptores Nicotínicos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/farmacologia , Receptores Nicotínicos/genética , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Timo/citologia , Timo/efeitos dos fármacos , Timo/imunologia , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Psychopharmacology (Berl) ; 229(4): 591-601, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23652588

RESUMO

RATIONALE: Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors. OBJECTIVE: Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice. METHODS: Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia. RESULTS: Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (-/-) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (-/-) mice showed unaltered cocaine CPP. CB2 (+/+) and (-/-) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine. CONCLUSIONS: Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.


Assuntos
Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Nicotina/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Anisóis/administração & dosagem , Anisóis/farmacologia , Comportamento Animal/efeitos dos fármacos , Cicloexanóis , Relação Dose-Resposta a Droga , Feminino , Masculino , Mecamilamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Receptor CB2 de Canabinoide/genética , Recompensa , Síndrome de Abstinência a Substâncias/metabolismo , Tabagismo/metabolismo
14.
Neuropharmacology ; 70: 228-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23416040

RESUMO

The 15q25 gene cluster contains genes that code for the α5, α3, and ß4 nicotinic acetylcholine receptor (nAChRs) subunits, and in human genetic studies, has shown the most robust association with smoking behavior and nicotine dependence to date. The limited available animal studies implicate a role for the α5 and ß4 nAChR subunits in nicotine dependence and withdrawal; however studies focusing on the behavioral role of the α3ß4* nAChR receptor subtype in nicotine dependence are lacking. Because of the apparent role of the α3ß4* nAChR subtype in nicotine dependence, the goal of the current study was to better evaluate the involvement of this subtype in nicotine mediated behavioral responses. Using the selective α3ß4* nAChR antagonist, α-conotoxin AuIB, we assessed the role of α3ß4* nAChRs in acute nicotine, nicotine reward, and physical and affective nicotine withdrawal. Because α5 has also been implicated in nicotine dependence behaviors in mice and can form functional receptors with α3ß4*, we also evaluated the role of the α3ß4α5* nAChR subtype in nicotine reward and somatic nicotine withdrawal signs by blocking the α3ß4* nAChR subtype in α5 nAChR knockout mice with AuIB. AuIB had no significant effect on acute nicotine behaviors, but dose-dependently attenuated nicotine reward and physical withdrawal signs, with no significant effect in affective withdrawal measures. Interestingly, AuIB also attenuated nicotine reward and somatic signs in α5 nAChR knockout mice. This study shows that α3ß4* nAChRs mediate nicotine reward and physical nicotine withdrawal, but not acute nicotine behaviors or affective nicotine withdrawal signs in mice. The α5 subunit is not required in the receptor assembly to mediate these effects. Our findings suggest an important role for the α3ß4* nAChR subtype in nicotine reward and physical aspects of the nicotine withdrawal syndrome.


Assuntos
Nicotina/farmacologia , Receptores Nicotínicos/fisiologia , Recompensa , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Conotoxinas/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/genética , Síndrome de Abstinência a Substâncias/psicologia
15.
Life Sci ; 92(8-9): 458-62, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22705310

RESUMO

The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non-cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Tabagismo/tratamento farmacológico , Animais , Endocanabinoides/fisiologia , Humanos , Camundongos , Ratos , Recompensa , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/fisiopatologia , Tabagismo/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA