Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Arthroplasty ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284396

RESUMO

INTRODUCTION: Soft tissue management in total hip arthroplasty (THA) includes appropriate restoration and/or alteration of leg length and offset to re-establish natural hip biomechanics. The purpose of this study was to evaluate the effect of leg length and offset-derived variables in a multivariable survival model for dislocation. METHODS: Clinical, surgical, and radiographic data was retrospectively acquired for 12,582 patients undergoing primary THA at a single institution from 1998 to 2018. There were twelve variables derived from preoperative and postoperative radiographs related to leg length and offset that were measured using a validated automated algorithm. These measurements, as well as other modifiable and non-modifiable surgical, clinical, and demographic factors, were used to determine hazard ratios (HR) for dislocation risk. RESULTS: None of the leg length or offset variables conferred significant risk or protective benefit for dislocation risk. By contrast, all other variables included in the multivariable model demonstrated a statistically significant effect on dislocation risk with a minimum effect size of 28% (range 0.72 to 1.54) (sex, surgical approach, acetabular liner type, femoral head size, neurologic disease, spine disease, and prior spine surgery). CONCLUSION: Contrary to traditional teaching and our hypothesis, operative changes in leg length and offset did not demonstrate any clinically or statistically significant effect in this large and well-characterized cohort. This does not imply that these variables are not important in individual cases, but rather suggests the overall impact of leg length and offset changes is relatively minor for dislocation risk compared to other variables that were found to be highly clinically and statistically significant in this population. These results may also suggest that surgeons do a good job of restoring native leg length and offset for patients, which may mitigate their analyzed impact.

2.
Spine J ; 24(2): 333-339, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37774982

RESUMO

BACKGROUND CONTEXT: Vertebral body tethering is the most popular nonfusion treatment for adolescent idiopathic scoliosis. The effect of the tether cord on the spine can be segmentally assessed by comparing the angle between two adjacent screws (interscrew angle) over time. Tether breakage has historically been assessed radiographically by a change in adjacent interscrew angle by greater than 5° between two sets of imaging. A threshold for growth modulation has not yet been established in the literature. These angle measurements are time consuming and prone to interobserver variability. PURPOSE: The purpose of this study was to develop an automated deep learning algorithm for measuring the interscrew angle following VBT surgery. STUDY DESIGN/SETTING: Single institution analysis of medical images. PATIENT SAMPLE: We analyzed 229 standing or bending AP or PA radiographs from 100 patients who had undergone VBT at our institution. OUTCOME MEASURES: Physiologic Measures: An image processing algorithm was used to measure interscrew angles. METHODS: A total of 229 standing or bending AP or PA radiographs from 100 VBT patients with vertebral body tethers were identified. Vertebral body screws were segmented by hand for all images and interscrew angles measured manually for 60 of the included images. A U-Net deep learning model was developed to automatically segment the vertebral body screws. Screw label maps were used to develop and tune an image processing algorithm which measures interscrew angles. Finally, the completed model and algorithm pipeline was tested on a 30-image test set. Dice score and absolute error were used to measure performance. RESULTS: Inter- and Intra-rater reliability for manual angle measurements were assessed with ICC and were both 0.99. The segmentation model Dice score against manually segmented ground truth across the 30-image test set was 0.96. The average interscrew angle absolute error between the algorithm and manually measured ground truth was 0.66° and ranged from 0° to 2.67° in non-overlapping screws (N=206). The primary modes of failure for the model were overlapping screws on a right thoracic/left lumbar construct with two screws in one vertebra and overexposed images. An algorithm step which determines whether an overlapping screw was present correctly identified all overlapping screws, with no false positives. CONCLUSION: We developed and validated an algorithm which measures interscrew angles for radiographs of vertebral body tether patients with an accuracy of within 1° for the majority of interscrew angles. The algorithm can process five images per second on a standard computer, leading to substantial time savings. This algorithm may be used for rapid processing of large radiographic databases of tether patients and could enable more rigorous definitions of growth modulation and cord breakage to be established.


Assuntos
Aprendizado Profundo , Escoliose , Adolescente , Humanos , Corpo Vertebral , Reprodutibilidade dos Testes , Coluna Vertebral , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia
3.
Front Immunol ; 14: 1284118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022656

RESUMO

Introduction: Treatment for glioblastomas, aggressive and nearly uniformly fatal brain tumors, provide limited long-term success. Immunosuppression by myeloid cells in both the tumor microenvironment and systemic circulation are believed to contribute to this treatment resistance. Standard multi-modality therapy includes conventionally fractionated radiotherapy over 6 weeks; however, hypofractionated radiotherapy over 3 weeks or less may be appropriate for older patients or populations with poor performance status. Lymphocyte concentration changes have been reported in patients with glioblastoma; however, monocytes are likely a key cell type contributing to immunosuppression in glioblastoma. Peripheral monocyte concentration changes in patients receiving commonly employed radiation fractionation schemes are unknown. Methods: To determine the effect of conventionally fractionated and hypofractionated radiotherapy on complete blood cell leukocyte parameters, retrospective longitudinal concentrations were compared prior to, during, and following standard chemoradiation treatment. Results: This study is the first to report increased monocyte concentrations and decreased lymphocyte concentrations in patients treated with conventionally fractionated radiotherapy compared to hypofractionated radiotherapy. Discussion: Understanding the impact of fractionation on peripheral blood leukocytes is important to inform selection of dose fractionation schemes for patients receiving radiotherapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/radioterapia , Glioblastoma/patologia , Resultado do Tratamento , Estudos Retrospectivos , Hipofracionamento da Dose de Radiação , Leucócitos/patologia , Microambiente Tumoral
4.
Comput Methods Programs Biomed ; 242: 107832, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778140

RESUMO

BACKGROUND: Medical image analysis pipelines often involve segmentation, which requires a large amount of annotated training data, which is time-consuming and costly. To address this issue, we proposed leveraging generative models to achieve few-shot image segmentation. METHODS: We trained a denoising diffusion probabilistic model (DDPM) on 480,407 pelvis radiographs to generate 256 âœ• 256 px synthetic images. The DDPM was conditioned on demographic and radiologic characteristics and was rigorously validated by domain experts and objective image quality metrics (Frechet inception distance [FID] and inception score [IS]). For the next step, three landmarks (greater trochanter [GT], lesser trochanter [LT], and obturator foramen [OF]) were annotated on 45 real-patient radiographs; 25 for training and 20 for testing. To extract features, each image was passed through the pre-trained DDPM at three timesteps and for each pass, features from specific blocks were extracted. The features were concatenated with the real image to form an image with 4225 channels. The feature-set was broken into random patches, which were fed to a U-Net. Dice Similarity Coefficient (DSC) was used to compare the performance with a vanilla U-Net trained on radiographs. RESULTS: Expert accuracy was 57.5 % in determining real versus generated images, while the model reached an FID = 7.2 and IS = 210. The segmentation UNet trained on the 20 feature-sets achieved a DSC of 0.90, 0.84, and 0.61 for OF, GT, and LT segmentation, respectively, which was at least 0.30 points higher than the naively trained model. CONCLUSION: We demonstrated the applicability of DDPMs as feature extractors, facilitating medical image segmentation with few annotated samples.


Assuntos
Benchmarking , Bisacodil , Humanos , Difusão , Fêmur , Processamento de Imagem Assistida por Computador
5.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35158845

RESUMO

Characterizing the motile properties of glioblastoma tumor cells could provide a useful way to predict the spread of tumors and to tailor the therapeutic approach. Radiomics has emerged as a diagnostic tool in the classification of tumor grade, stage, and prognosis. The purpose of this work is to examine the potential of radiomics to predict the motility of glioblastoma cells. Tissue specimens were obtained from 31 patients undergoing surgical resection of glioblastoma. Mean tumor cell motility was calculated from time-lapse videos of specimen cells. Manual segmentation was used to define the border of the enhancing tumor T1-weighted MR images, and 107 radiomics features were extracted from the normalized image volumes. Model parameter coefficients were estimated using the adaptive lasso technique validated with leave-one-out cross validation (LOOCV) and permutation tests. The R-squared value for the predictive model was 0.60 with p-values for each individual parameter estimate less than 0.0001. Permutation test models trained with scrambled motility failed to produce a model that out-performed the model trained on the true data. The results of this work suggest that it is possible for a quantitative MRI feature-based regression model to non-invasively predict the cellular motility of glioblastomas.

6.
Neuroradiology ; 64(3): 603-609, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043225

RESUMO

INTRODUCTION: Trigeminal neuralgia (TN) is a devastating neuropathic condition. This work tests whether radiomics features derived from MRI of the trigeminal nerve can distinguish between TN-afflicted and pain-free nerves. METHODS: 3D T1- and T2-weighted 1.5-Tesla MRI volumes were retrospectively acquired for patients undergoing stereotactic radiosurgery to treat TN. A convolutional U-net deep learning network was used to segment the trigeminal nerves from the pons to the ganglion. A total of 216 radiomics features consisting of image texture, shape, and intensity were extracted from each nerve. Within a cross-validation scheme, a random forest feature selection method was used, and a shallow neural network was trained using the selected variables to differentiate between TN-affected and non-affected nerves. Average performance over the validation sets was measured to estimate generalizability. RESULTS: A total of 134 patients (i.e., 268 nerves) were included. The top 16 performing features extracted from the masks were selected for the predictive model. The average validation accuracy was 78%. The validation AUC of the model was 0.83, and sensitivity and specificity were 0.82 and 0.76, respectively. CONCLUSION: Overall, this work suggests that radiomics features from MR imaging of the trigeminal nerves correlate with the presence of pain from TN.


Assuntos
Radiocirurgia , Neuralgia do Trigêmeo , Humanos , Imageamento por Ressonância Magnética/métodos , Radiocirurgia/métodos , Estudos Retrospectivos , Nervo Trigêmeo/diagnóstico por imagem , Neuralgia do Trigêmeo/diagnóstico por imagem , Neuralgia do Trigêmeo/cirurgia
7.
Clin Transl Radiat Oncol ; 29: 27-32, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34095557

RESUMO

PURPOSE: Adjuvant radiosurgery to the cavities of surgically resected brain metastases provides excellent local tumor control while reducing the risk of deleterious cognitive decline associated with whole brain radiotherapy. A subset of these patients, however, will develop disease recurrence following radiosurgery. In this study, we sought to assess the predictive capability of radiomic-based models, as compared with standard clinical features, in predicting local tumor control. METHODS: We performed a retrospective chart review of patients treated with adjuvant radiosurgery for resected brain metastases at the "Institution" from 2009 to 2019. Shape, intensity and texture based radiomics features of the cavities were extracted from the pre-radiosurgery treatment planning MRI scans and trained using a gradient boosting technique with K-fold cross validation. RESULTS: In total, 71 cavities from 67 treated patients were included for analysis. The 6 and 12 month local control estimates were 86% and 76%, respectively. The 6 and 12 month overall survival was 78% and 55%, respectively. Thirty-six patients developed intracranial failures outside of the surgical cavity. The predictive model for local control trained on imaging features from the whole cavity achieved an area-under-the-curve (AUC) of 0.73 on the validation set versus an AUC of 0.40 for the clinical features. CONCLUSIONS: Here we report a single institutional experience using radiomic-based predictive modeling of local tumor control following adjuvant Gamma Knife radiosurgery for resected brain metastases. We found the radiomics features to provide more robust predictive models of local control rates versus clinical features alone. Such techniques could potentially prove useful in the clinical setting and warrant further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA