Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(17): 1548-1561.e10, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37442140

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells that facilitate cancer progression. However, our knowledge of the niches of individual TAM subsets and their development and function remain incomplete. Here, we describe a population of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)-expressing TAMs, which form coordinated multi-cellular "nest" structures that are heterogeneously distributed proximal to vasculature in tumors of a spontaneous murine model of breast cancer. We demonstrate that LYVE-1+ TAMs develop in response to IL-6, which induces their expression of the immune-suppressive enzyme heme oxygenase-1 and promotes a CCR5-dependent signaling axis, which guides their nest formation. Blocking the development of LYVE-1+ TAMs or their nest structures, using gene-targeted mice, results in an increase in CD8+ T cell recruitment to the tumor and enhanced response to chemotherapy. This study highlights an unappreciated collaboration of a TAM subset to form a coordinated niche linked to immune exclusion and resistance to anti-cancer therapy.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Macrófagos/metabolismo
2.
Sci Adv ; 7(45): eabg9518, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730997

RESUMO

Tumor-associated macrophages (TAMs) are a highly plastic stromal cell type that support cancer progression. Using single-cell RNA sequencing of TAMs from a spontaneous murine model of mammary adenocarcinoma (MMTV-PyMT), we characterize a subset of these cells expressing lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve-1) that spatially reside proximal to blood vasculature. We demonstrate that Lyve-1+ TAMs support tumor growth and identify a pivotal role for these cells in maintaining a population of perivascular mesenchymal cells that express α-smooth muscle actin and phenotypically resemble pericytes. Using photolabeling techniques, we show that mesenchymal cells maintain their prevalence in the growing tumor through proliferation and uncover a role for Lyve-1+ TAMs in orchestrating a selective platelet-derived growth factor­CC­dependent expansion of the perivascular mesenchymal population, creating a proangiogenic niche. This study highlights the inter-reliance of the immune and nonimmune stromal network that supports cancer progression and provides therapeutic opportunities for tackling the disease.

3.
Cell Rep Med ; 2(4): 100227, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948568

RESUMO

Utilizing T cells expressing chimeric antigen receptors (CARs) to identify and attack solid tumors has proven challenging, in large part because of the lack of tumor-specific targets to direct CAR binding. Tumor selectivity is crucial because on-target, off-tumor activation of CAR T cells can result in potentially lethal toxicities. This study presents a stringent hypoxia-sensing CAR T cell system that achieves selective expression of a pan-ErbB-targeted CAR within a solid tumor, a microenvironment characterized by inadequate oxygen supply. Using murine xenograft models, we demonstrate that, despite widespread expression of ErbB receptors in healthy organs, the approach provides anti-tumor efficacy without off-tumor toxicity. This dynamic on/off oxygen-sensing safety switch has the potential to facilitate unlimited expansion of the CAR T cell target repertoire for treating solid malignancies.


Assuntos
Hipóxia/metabolismo , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Genes erbB/genética , Humanos , Hipóxia/genética , Imunoterapia Adotiva/métodos , Camundongos Transgênicos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Cell Rep Med ; 2(12): 100457, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028604

RESUMO

Second generation (2G) chimeric antigen receptors (CARs) contain a CD28 or 41BB co-stimulatory endodomain and elicit remarkable efficacy in hematological malignancies. Third generation (3G) CARs extend this linear blueprint by fusing both co-stimulatory units in series. However, clinical impact has been muted despite compelling evidence that co-signaling by CD28 and 41BB can powerfully amplify natural immune responses. We postulate that effective dual co-stimulation requires juxta-membrane positioning of endodomain components within separate synthetic receptors. Consequently, we designed parallel (p)CARs in which a 2G (CD28+CD3ζ) CAR is co-expressed with a 41BB-containing chimeric co-stimulatory receptor. We demonstrate that the pCAR platform optimally harnesses synergistic and tumor-dependent co-stimulation to resist T cell exhaustion and senescence, sustaining proliferation, cytokine release, cytokine signaling, and metabolic fitness upon repeated stimulation. When engineered using targeting moieties of diverse composition, affinity, and specificity, pCAR T cells consistently elicit superior anti-tumor activity compared with T cells that express traditional linear CARs.


Assuntos
Antígenos CD28/metabolismo , Membrana Celular/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Integrinas/metabolismo , Linfoma/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Mucina-1/metabolismo , Multimerização Proteica , Receptores de Fator Estimulador de Colônias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 9(1): 2951, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054470

RESUMO

Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.


Assuntos
Neoplasias da Mama/metabolismo , Macrófagos/metabolismo , Metástase Neoplásica , Cicatrização/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno/metabolismo , Citocinas/metabolismo , Endopeptidases , Feminino , Gelatinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Fenótipo , Prognóstico , Serina Endopeptidases/metabolismo , Pele/metabolismo , Microambiente Tumoral/fisiologia
6.
Clin Cancer Res ; 24(7): 1617-1628, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339440

RESUMO

Purpose: Unprecedented clinical outcomes have been achieved in a variety of cancers by targeting immune checkpoint molecules. This preclinical study investigates heme oxygenase-1 (HO-1), an immunosuppressive enzyme that is expressed in a wide variety of cancers, as a potential immune checkpoint target in the context of a chemotherapy-elicited antitumor immune response. We evaluate repurposing tin mesoporphyrin (SnMP), which has demonstrated safety and efficacy targeting hepatic HO in the clinic for the treatment of hyperbilirubinemia, as an immune checkpoint blockade therapy for the treatment of cancer.Experimental Design: SnMP and genetic inactivation of myeloid HO-1 were evaluated alongside 5-fluorouracil in an aggressive spontaneous murine model of breast cancer (MMTV-PyMT). Single-cell RNA sequencing analysis, tumor microarray, and clinical survival data from breast cancer patients were used to support the clinical relevance of our observations.Results: We demonstrate that SnMP inhibits immune suppression of chemotherapy-elicited CD8+ T cells by targeting myeloid HO-1 activity in the tumor microenvironment. Microarray and survival data from breast cancer patients reveal that HO-1 is a poor prognostic factor in patients receiving chemotherapy. Single-cell RNA-sequencing analysis suggests that the myeloid lineage is a significant source of HO-1 expression, and is co-expressed with the immune checkpoints PD-L1/2 in human breast tumors. In vivo, we therapeutically compare the efficacy of targeting these two pathways alongside immune-stimulating chemotherapy, and demonstrate that the efficacy of SnMP compares favorably with PD-1 blockade in preclinical models.Conclusions: SnMP could represent a novel immune checkpoint therapy, which may improve the immunological response to chemotherapy. Clin Cancer Res; 24(7); 1617-28. ©2018 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Metaloporfirinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Fluoruracila/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760930

RESUMO

The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor ß production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.


Assuntos
Imunomodulação , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/fisiologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Parasita , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator de Transcrição STAT4/metabolismo , Toxoplasma/fisiologia , Fator de Crescimento Transformador beta/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA