Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 597-612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436040

RESUMO

Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic activity, and molecular docking. Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory activities of all the synthesised compounds were evaluated. Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01µg/mL). However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (-8.6 kcal/mol compared to (-4.7 kcal/mol), making it more effective. Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.


Assuntos
Agaricales , Antineoplásicos , Ciclopentanos , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cinética , Antibacterianos/farmacologia , Antraquinonas/farmacologia
2.
RSC Adv ; 14(1): 677-688, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173593

RESUMO

In this study, we developed a novel pyrazolo[3,4-c]pyrazole derivative with antibacterial and antifungal activities that shows great potential for treating infectious diseases. To evaluate the binding affinity of 1AJ0 and 1AI9 proteins for developing potent antibacterial and antifungal compounds, we used the Vitex negundo (VN) leaf extract as the capping and reducing agent and reacted it with Fe2O3 and Cu(OAc)2 solutions to synthesize the VN-Fe3O4-CuO nanocatalyst. The newly synthesized compounds were confirmed using Fourier transform infrared spectroscopy, transmission electron microscopy, UV-visible spectroscopy, and X-ray diffraction analyses. Antibacterial screening revealed that compound 1g was highly active against Escherichia coli (MIC: 1 µg mL-1) and was much more effective than the standard ciprofloxacin. Compound 1b showed a higher antifungal activity than clotrimazole against Candida albicans (MIC: 0.25 µg mL-1) and cytotoxic activity against MCF-7 cancer cell lines. Compounds 1a-1l were exhibited low cytotoxicity activity compared to the standard doxorubicin (LC50: 21.05 ± 0.82 µg mL-1). To further support the discovery of new active antibacterial agents, compounds 1g and 1b and proteins 1AJ0 and 1AI9 were examined using the AutoDock Vina program and were compared with the standards ciprofloxacin and clotrimazole. With the 1AJ0 protein, compound 1g had a higher docking score (-3.7 kcal mol-1) than ciprofloxacin (-5.6 kcal mol-1), and with the 1AI9 protein, compound 1b had a higher docking score (-4.8 kcal mol-1) than clotrimazole (-4.4 kcal mol-1). Additionally, molecular dynamics simulation was used to investigate the most probable binding mode of compounds 1b and 1g with 1AI9 and 1AJ0, respectively. The VN-Fe3O4-CuO catalyst was used to prepare pyrazolo[3,4-c]pyrazole derivatives, which were successfully characterized and screened for antimicrobial and cytotoxic activities, molecular docking, and molecular dynamics simulation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA