Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cells ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36497055

RESUMO

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Assuntos
Quebras de DNA de Cadeia Dupla , Radiação Ionizante , Pontos de Checagem da Fase G2 do Ciclo Celular , Espécies Reativas de Oxigênio , Transdução de Sinais
2.
DNA Repair (Amst) ; 113: 103305, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255311

RESUMO

BACKGROUND: Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we performed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.5 h and 4 h after exposure to LD (0.1 Gy) and high doses (HD; 1 Gy) of IR. RESULTS: The proteome remained relatively stable (29; 0.5% proteins responded), whereas the phosphoproteome changed dynamically (819; 7% phosphosites changed) upon irradiation. Dose-dependent alterations of 25 IR-responsive proteins were identified, with only four in common between LD and HD. Mitochondrial metabolic proteins and pathways responded to LD, whereas transporter proteins and mitochondrial uncoupling pathways responded to HD. Congruently, mitochondrial respiration increased after LD exposure but decreased after HD exposure. While the bulk of the phosphoproteome response to LD (76%) occurred already at 0.5 h, an equivalent proportion of the phosphosites responded to HD at both time points. Motif, kinome/phosphatome, kinase-substrate, and pathway analyses revealed a robust DNA damage response (DDR) activation after HD exposure but not after LD exposure. Instead, LD-irradiation induced (de)phosphorylation of kinases, kinase-substrates and phosphatases that predominantly respond to reactive oxygen species (ROS) production. CONCLUSION: Our analyses identify discrete global proteome and phosphoproteome responses after LD and HD, uncovering novel proteins and protein (de)phosphorylation events involved in the dose-dependent ionizing radiation responses.

3.
Arch Toxicol ; 94(5): 1655-1671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189037

RESUMO

Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.


Assuntos
Proteoma/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Diferenciação Celular , Cisplatino/toxicidade , Quebras de DNA de Cadeia Dupla , Etoposídeo/toxicidade , Humanos , Camundongos , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Inibidores da Topoisomerase II
4.
Photochem Photobiol Sci ; 17(12): 1842-1852, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30065996

RESUMO

Solar ultraviolet (UV) radiation generates bulky photodimers at di-pyrimidine sites that pose stress to cells and organisms by hindering DNA replication and transcription. In addition, solar UV also induces various types of oxidative DNA lesions and single strand DNA breaks. Relieving toxicity and maintenance of genomic integrity are of clinical importance in relation to erythema/edema and diseases such as cancer, neurodegeneration and premature ageing, respectively. Following solar UV radiation, a network of DNA damage response mechanisms triggers a signal transduction cascade to regulate various genome-protection pathways including DNA damage repair, cell cycle control, apoptosis, transcription and chromatin remodeling. The effects of UVC and UVB radiation on cellular DNA are predominantly accounted for by the formation of photodimers at di-pyrimidine sites. These photodimers are mutagenic: UVC, UVB and also UVA radiation induce a broadly similar pattern of transition mutations at di-pyrimidine sites. The mutagenic potency of solar UV is counteracted by efficient repair of photodimers involving global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER); the latter is a specialized repair pathway to remove transcription-blocking photodimers and restore UV-inhibited transcription. On the molecular level these processes are facilitated and regulated by various post-translational modifications of NER factors and the chromatin substrate. Inherited defects in NER are manifested in different diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), UV sensitive syndrome (UVsS) and the photosensitive form of trichothiodystrophy (TTD). XP patients are prone to sunlight-induced skin cancer. UVB irradiated XP and CS knockout mouse models unveiled that only TC-NER counteracts erythema/edema, whereas both GG-NER and TC-NER protect against UVB-induced cancer. Additionally, UVA radiation induces mutations characterized by oxidation-linked signature at non-di-pyrimidine sites. The biological relevance of oxidation damage is demonstrated by the cancer susceptibility of UVB-irradiated mice deficient in repair of oxidation damage, i.e., 8-oxoguanine.


Assuntos
Dano ao DNA/efeitos da radiação , Raios Ultravioleta , Animais , Reparo do DNA , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética
5.
Mol Cell Biol ; 35(7): 1254-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624349

RESUMO

DNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status. Expression of wild-type but not ubiquitinase-defective ARIH1 constructs prevented sensitization caused by ARIH1 knockdown. ARIH1 protein abundance increased after DNA damage through attenuation of proteasomal degradation that required ATM signaling. Accumulated ARIH1 associated with 4EHP, and in turn, this competitive inhibitor of the eukaryotic translation initiation factor 4E (eIF4E) underwent increased nondegradative ubiquitination upon DNA damage. Genotoxic stress led to an enrichment of ARIH1 in perinuclear, ribosome-containing regions and triggered 4EHP association with the mRNA 5' cap as well as mRNA translation arrest in an ARIH1-dependent manner. Finally, restoration of DNA damage-induced translation arrest in ARIH1-depleted cells by means of an eIF2 inhibitor was sufficient to reinstate resistance to genotoxic stress. These findings identify ARIH1 as a potent mediator of DNA damage-induced translation arrest that protects stem and cancer cells against genotoxic stress.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/genética , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Biossíntese de Proteínas , Interferência de RNA , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Sci Signal ; 6(259): ra5, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23354688

RESUMO

In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits ß-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.


Assuntos
Caseína Quinase I/metabolismo , Dano ao DNA , Células-Tronco Embrionárias/enzimologia , Células-Tronco Pluripotentes/enzimologia , Biologia de Sistemas , Via de Sinalização Wnt , Animais , Apoptose/genética , Caseína Quinase I/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Camundongos , Células-Tronco Pluripotentes/citologia , Interferência de RNA , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Mutat Res ; 735(1-2): 32-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564430

RESUMO

Calcineurin is a Ca(2+)-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-κB activity, although at lower concentrations, arsenite enhanced NF-κB activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.


Assuntos
Arsenitos/farmacocinética , Calcineurina/metabolismo , Calcineurina/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Células Jurkat , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Pele/metabolismo , Superóxidos/metabolismo , Fator de Transcrição RelA/metabolismo
8.
Radiat Res ; 177(5): 602-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22468706

RESUMO

The recent steep increase in population dose from radiation-based medical diagnostics, such as computed tomography (CT) scans, requires insight into human health risks, especially in terms of cancer development. Since the induction of genetic damage is considered a prominent cause underlying the carcinogenic potential of ionizing radiation, we quantified the induction of micronuclei and loss of heterozygosity events in human cells after exposure to clinically relevant low doses of X rays. A linear dose-response relationship for induction of micronuclei was observed in human fibroblasts with significantly increased frequencies at doses as low as 20 mGy. Strikingly, cells exposed during S-phase displayed the highest induction, whereas non S-phase cells showed no significant induction below 100 mGy. Similarly, the induction of loss of heterozygosity in human lymphoblastoid cells quantified at HLA loci, was linear with dose and reached significance at 50 mGy. Together the findings favor a linear-no-threshold model for genetic damage induced by acute exposure to ionizing radiation. We speculate that the higher radiosensitivity of S-phase cells might relate to the excessive cancer risk observed in highly proliferative tissues in radiation exposed organisms.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/efeitos da radiação , Linfócitos/efeitos da radiação , Raios X/efeitos adversos , Divisão Celular/efeitos da radiação , Células Cultivadas/efeitos da radiação , Células Cultivadas/ultraestrutura , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Genes MHC Classe I/efeitos da radiação , Humanos , Perda de Heterozigosidade , Linfócitos/ultraestrutura , Testes para Micronúcleos , Tolerância a Radiação , Radiografia , Reprodutibilidade dos Testes , Fase S/efeitos da radiação
9.
Photochem Photobiol ; 88(1): 147-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22017241

RESUMO

Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.


Assuntos
Reparo do DNA , Fibroblastos/efeitos da radiação , Radiação Ionizante , Sequência de Bases , Primers do DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Mol Cell Biol ; 31(24): 4964-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006019

RESUMO

Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Dano ao DNA , Perfilação da Expressão Gênica/métodos , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteômica/métodos , Transdução de Sinais
11.
Mutat Res ; 728(3): 107-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21763452

RESUMO

The accumulation of DNA damage is a slow but hazardous phenomenon that may lead to cell death, accelerated aging features and cancer. One of the most versatile and important defense mechanisms against the accumulation of DNA damage is nucleotide excision repair (NER), in which the Xeroderma pigmentosum group C (XPC) protein plays a prominent role. NER can be divided into global genome repair (GG-NER) and transcription coupled repair (TC-NER). XPC is a key factor in GG-NER where it functions in DNA damage recognition and after which the repair machinery is recruited to eliminate the DNA damage. Defective XPC functioning has been shown to result in a cancer prone phenotype, in human as well as in mice. Mutation accumulation in XPC deficient mice is accelerated and increased, resulting in an increased tumor incidence. More recently XPC has also been linked to functions outside of NER since XPC deficient mice show a divergent tumor spectrum compared to other NER deficient mouse models. Multiple in vivo and in vitro experiments indicate that XPC appears to be involved in the initiation of several DNA damage-induced cellular responses. XPC seems to function in the removal of oxidative DNA damage, redox homeostasis and cell cycle control. We hypothesize that this combination of increased oxidative DNA damage sensitivity, disturbed redox homeostasis together with inefficient cell cycle control mechanisms are causes of the observed increased cancer susceptibility in oxygen exposed tissues. Such a phenotype is absent in other NER-deficient mice, including Xpa.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias/etiologia , Envelhecimento , Animais , Pontos de Checagem do Ciclo Celular , Reparo do DNA , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo
12.
Free Radic Biol Med ; 50(10): 1392-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21354304

RESUMO

The protein phosphatase calcineurin has been gradually revealing itself as the central controller of our immune response, although it is involved in a wide array of signaling pathways related to cellular development and cell cycle progression. As such, calcineurin is an attractive, yet delicate, therapeutic target for the prevention of allograft rejection and treatment of several inflammatory skin conditions. However, calcineurin activity is not only sensitive to immunosuppressants such as cyclosporin A and tacrolimus, but also subject to modulation by reactive oxygen species. We have recently shown, both in vivo and in vitro, that UVA1 radiation suppresses calcineurin activity. In this paper, we present evidence that this activity loss is due to singlet oxygen and superoxide generated by photosensitization and show that a closely related phosphatase, PP2A, is not affected. Furthermore, a survey of this damage reveals oxidation of several Met and Cys residues as well as an overall conformational change. These findings provide a mechanistic basis for the hypothesis that UVA1 and calcineurin inhibitors both affect the same signal transduction pathway in skin.


Assuntos
Inibidores de Calcineurina , Imunossupressores/farmacologia , Raios Ultravioleta , Calcineurina/química , Calcineurina/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Oxirredução , Conformação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo
13.
Radiat Res ; 175(4): 432-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21299404

RESUMO

Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.


Assuntos
Sobrevivência Celular/efeitos da radiação , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Doses de Radiação
14.
J Cell Sci ; 124(Pt 3): 435-46, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21224401

RESUMO

Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Histonas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Simples , Dano ao DNA/efeitos da radiação , DNA de Cadeia Simples/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Humanos , Fase de Repouso do Ciclo Celular/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta
15.
Cell Cycle ; 9(12): 2300-4, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20519944

RESUMO

Genomes encode all RNAs required for life. For this simple reason the genome's stability is a prerequisite for maintaining the fitness of the cell, the organism and its progeny. Paradoxically, any enzymatic transaction at the DNA, including transcription itself, entails the risk of local destabilization of the DNA helix, thereby threatening genomic integrity. Particularly where transcription and replication meet, the genome may be at an increased risk of nucleotide substitution mutations, deletions or rearrangements. This Extra-view sketches our understanding of the different threats that transcription imposes on genome stability. We will focus on recent work highlighting the role of DNA damage in transcription-associated mutagenesis (TAM) in mammalian cells. Furthermore we discuss the possible implications of TAM for human fitness and disease with an emphasis on carcinogenesis. In addition, we propose an updated nomenclature for the mechanistically different forms of TAM.


Assuntos
Replicação do DNA , Instabilidade Genômica/genética , Transcrição Gênica , Animais , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Humanos
16.
Chem Res Toxicol ; 23(7): 1175-83, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20509621

RESUMO

Trivalent antimony is a known genotoxic agent classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) and as an animal carcinogen by the German MAK Commission. Nevertheless, the underlying mechanism for its genotoxicity remains elusive. Because of the similarities between antimony and arsenic, the inhibition of DNA repair has been a promising hypothesis. Investigations on the removal of DNA lesions now revealed a damage specific impairment of nucleotide excision repair (NER). After irradiation of A549 human lung carcinoma cells with UVC, a higher number of cyclobutane pyrimidine dimers (CPD) remained in the presence of SbCl(3), whereas processing of the 6-4 photoproducts (6-4PP) and benzo[a]pyrene diol epoxide (BPDE)-induced DNA adducts was not impaired. Nevertheless, cell viability was reduced in a more than additive mode after combined treatment of SbCl(3) with UVC as well as with BPDE. In search of the molecular targets, a decrease in gene expression and protein level of XPE was found, which is known to be indispensable for the recognition of CPD. Moreover, trivalent antimony was shown to interact with the zinc finger domain of XPA, another NER protein, since SbCl(3) mediated a concentration dependent release of zinc from a peptide consistent with this domain. In the cellular system, association of XPA to and dissociation from damaged DNA was diminished in the presence of SbCl(3). These results show for the first time that trivalent antimony interferes with proteins involved in nucleotide excision repair and partly impairs this pathway, pointing to an indirect mechanism in the genotoxicity of trivalent antimony.


Assuntos
Antimônio/toxicidade , Carcinógenos/toxicidade , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteína de Xeroderma Pigmentoso Grupo A/antagonistas & inibidores , Benzopirenos/toxicidade , Linhagem Celular Tumoral , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
17.
Mutat Res ; 689(1-2): 50-8, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20471405

RESUMO

Homologous recombination is essential for repair of DNA interstrand cross-links and double-strand breaks. The Rad51C protein is one of the five Rad51 paralogs in vertebrates implicated in homologous recombination. A previously described hamster cell mutant defective in Rad51C (CL-V4B) showed increased sensitivity to DNA damaging agents and displayed genomic instability. Here, we identified a splice donor mutation at position +5 of intron 5 of the Rad51C gene in this mutant, and generated mice harboring an analogous base pair alteration. Rad51C(splice) heterozygous animals are viable and do not display any phenotypic abnormalities, however homozygous Rad51C(splice) embryos die during early development (E8.5). Detailed analysis of two CL-V4B revertants, V4B-MR1 and V4B-MR2, that have reduced levels of full-length Rad51C transcript when compared to wild type hamster cells, showed increased sensitivity to mitomycin C (MMC) in clonogenic survival, suggesting haploinsufficiency of Rad51C. Similarly, mouse Rad51C(splice/neo) heterozygous ES cells also displayed increased MMC sensitivity. Moreover, in both hamster revertants, Rad51C haploinsufficiency gives rise to increased frequencies of spontaneous and MMC-induced chromosomal aberrations, impaired sister chromatid cohesion and reduced cloning efficiency. These results imply that adequate expression of Rad51C in mammalian cells is essential for maintaining genomic stability and sister chromatid cohesion to prevent malignant transformation.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Instabilidade Genômica , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Feminino , Haploidia , Camundongos , Camundongos Endogâmicos C57BL , Mitomicina/farmacologia , Mutação , Gravidez , Troca de Cromátide Irmã
19.
Curr Biol ; 20(2): 170-5, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20045328

RESUMO

Skin cancer is the most ubiquitous cancer type in the Caucasian population, and its incidence is increasing rapidly [1]. Transcribed proliferation-related genes in dermal stem cells are targets for the induction of ultraviolet light (UV)-induced mutations that drive carcinogenesis. We have recently found that transcription of a gene increases its mutability by UV in mammalian stem cells, suggesting a role of transcription in skin carcinogenesis [2]. Here we show that transcription-associated UV-induced nucleotide substitutions are caused by increased deamination of cytosines to uracil within photolesions at the transcribed strand, presumably at sites of stalled transcription complexes. Additionally, via an independent mechanism, transcription of UV-damaged DNA induces the generation of intragenic deletions. We demonstrate that transcription-coupled nucleotide excision repair (TC-NER) provides protection against both classes of transcription-associated mutagenesis. Combined, these results unveil the existence of two mutagenic pathways operating specifically at the transcribed DNA strand of active genes. Moreover, these results uncover a novel role for TC-NER in the suppression of UV-induced genome aberrations and provide a rationale for the efficient induction of apoptosis by stalled transcription complexes.


Assuntos
Citosina/metabolismo , Mutagênese , Transcrição Gênica , Raios Ultravioleta , Desaminação , Hipoxantina Fosforribosiltransferase/genética
20.
Chem Res Toxicol ; 23(2): 432-42, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20092276

RESUMO

Water-soluble and particulate cadmium compounds are carcinogenic to humans. While direct interactions with DNA are unlikely to account for carcinogenicity, induction of oxidative DNA damage and interference with DNA repair processes might be more relevant underlying modes of action (recently summarized, for example, in Joseph , P. (2009) Tox. Appl. Pharmacol. 238 , 271 - 279). The present study aimed to compare genotoxic effects of particulate CdO and soluble CdCl(2) in cultured human cells (A549, VH10hTert). Both cadmium compounds increased the baseline level of oxidative DNA damage. Even more pronounced, both cadmium compounds inhibited the nucleotide excision repair (NER) of BPDE-induced bulky DNA adducts and UVC-induced photolesions in a dose-dependent manner at noncytotoxic concentrations. Thereby, the uptake of cadmium in the nuclei strongly correlated with the repair inhibition of bulky DNA adducts, indicating that independent of the cadmium compound applied Cd(2+) is the common species responsible for the observed repair inhibition. Regarding the underlying molecular mechanisms in human cells, CdCl(2) (as shown before by Meplan, C., Mann, K. and Hainaut, P. (1999) J. Biol. Chem. 274 , 31663 - 31670 ) and CdO altered the conformation of the zinc binding domain of the tumor suppressor protein p53. In further studies applying only CdCl(2), cadmium decreased the total nuclear protein level of XPC, which is believed to be the principle initiator of global genome NER. This led to diminished association of XPC to sites of local UVC damage, resulting in decreased recruitment of further NER proteins. Additionally, CdCl(2) strongly disturbed the disassembly of XPC and XPA. In summary, our data indicate a general nucleotide excision repair inhibition by cadmium compounds, which is most likely caused by a diminished assembly and disassembly of the NER machinery. These data reveal new insights into the mechanisms involved in cadmium carcinogenesis and provide further evidence that DNA repair inhibition may be one predominant mechanism in cadmium induced carcinogenicity.


Assuntos
Compostos de Cádmio/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Estresse Oxidativo , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA