Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 269, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475767

RESUMO

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Cisplatino , Proteína Supressora de Tumor p53 , Fluoruracila , Bactérias
2.
Proc Natl Acad Sci U S A ; 121(10): e2320859121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412130

RESUMO

Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased ß-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico HSP70 , Mycoplasma , Neoplasias , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA , Dano ao DNA , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mycoplasma/fisiologia , Neoplasias/metabolismo , Neoplasias/microbiologia , Neoplasias/patologia , Microambiente Tumoral
3.
Front Microbiol ; 13: 1022704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386669

RESUMO

Chaperone proteins are redundant in nature and, to achieve their function, they bind a large repertoire of client proteins. DnaK is a bacterial chaperone protein that recognizes misfolded and aggregated proteins and drives their folding and intracellular trafficking. Some Mycoplasmas are associated with cancers, and we demonstrated that infection with a strain of Mycoplasma fermentans isolated in our lab promoted lymphoma in a mouse model. Its DnaK is expressed intracellularly in infected cells, it interacts with key proteins to hamper essential pathways related to DNA repair and p53 functions and uninfected cells can take-up extracellular DnaK. We profile here for the first time the eukaryotic proteins interacting with DnaK transiently expressed in five cancer cell lines. A total of 520 eukaryotic proteins were isolated by immunoprecipitation and identified by Liquid Chromatography Mass Spectrometry (LC-MS) analysis. Among the cellular DnaK-binding partners, 49 were shared between the five analyzed cell lines, corroborating the specificity of the interaction of DnaK with these proteins. Enrichment analysis revealed multiple RNA biological processes, DNA repair, chromatin remodeling, DNA conformational changes, protein-DNA complex subunit organization, telomere organization and cell cycle as the most significant ontology terms. This is the first study to show that a bacterial chaperone protein interacts with key eukaryotic components thus suggesting DnaK could become a perturbing hub for the functions of important cellular pathways. Given the close interactions between bacteria and host cells in the local microenvironment, these results provide a foundation for future mechanistic studies on how bacteria interfere with essential cellular processes.

4.
Viruses ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34834998

RESUMO

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is primarily responsible for coronavirus disease (COVID-19) and it is characterized by respiratory illness with fever and dyspnea. Severe vascular problems and several other manifestations, including neurological ones, have also been frequently reported, particularly in the great majority of "long hauler" patients. SARS-CoV-2 infects and replicates in lung epithelial cells, while dysfunction of endothelial and neuronal brain cells has been observed in the absence of productive infection. It has been shown that the Spike protein can interact with specific cellular receptors, supporting both viral entry and cellular dysfunction. It is thus clear that understanding how and when these receptors are regulated, as well as how much they are expressed would help in unveiling the multifaceted aspects of this disease. Here, we show that SH-SY5Y neuroblastoma cells express three important cellular surface molecules that interact with the Spike protein, namely ACE2, TMPRSS2, and NRP1. Their levels increase when cells are treated with retinoic acid (RA), a commonly used agent known to promote differentiation. This increase matched the higher levels of receptors observed on HUVEC (primary human umbilical vein endothelial cells). We also show by confocal imaging that replication-defective pseudoviruses carrying the SARS-CoV-2 Spike protein can infect differentiated and undifferentiated SH-SY5Y, and HUVEC cells, although with different efficiencies. Neuronal cells and endothelial cells are potential targets for SARS-CoV-2 infection and the interaction of the Spike viral protein with these cells may cause their dysregulation. Characterizing RNA and protein expression tempo, mode, and levels of different SARS-CoV-2 receptors on both cell subpopulations may have clinical relevance for the diagnosis and treatment of COVID-19-infected subjects, including long hauler patients with neurological manifestations.


Assuntos
COVID-19/metabolismo , Células Endoteliais/metabolismo , Neuroblastoma/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Linhagem Celular Tumoral , Células Endoteliais/virologia , Interações entre Hospedeiro e Microrganismos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neuroblastoma/virologia , Neuropilina-1/metabolismo , Serina Endopeptidases/metabolismo , Internalização do Vírus
5.
J Transl Med ; 19(1): 453, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717655

RESUMO

HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Animais , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Emtricitabina/farmacologia , Emtricitabina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis , Camundongos , Oxazinas , Piperazinas , Piridonas , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Carga Viral
6.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075244

RESUMO

Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.


Assuntos
Inflamação/genética , Chaperonas Moleculares/genética , Infecções por Mycoplasma/genética , Mycoplasma/genética , Neoplasias/genética , Apoptose/genética , Transformação Celular Neoplásica/genética , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Inflamação/microbiologia , Inflamação/patologia , Mycoplasma/patogenicidade , Infecções por Mycoplasma/microbiologia , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética
7.
AIDS Res Hum Retroviruses ; 30(12): 1192-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25375960

RESUMO

In India Kaposi's sarcoma is rarely seen in AIDS patients. Hence the current belief is that the incidence of human herpesvirus-8 (HHV-8) is very low in this subcontinent, most probably due to the heterosexual route of HIV transmission. However, there is a scarcity of data on the prevalence of HHV-8 in India. In India the primary mode of HIV transmission is the heterosexual route. Therefore we aimed to determine the prevalence of antibodies against HHV-8 in North Indian HIV-infected men naive of antiretroviral therapy (ART). In a prospective study, 165 Indian adult males were recruited from an ART clinic. Blood samples were collected before administering any antiretroviral drug. The sera were tested for antibodies against HHV-8 using a commercial enzyme-linked immunosorbent assay (ELISA) kit, which detects IgG antibodies to lytic antigens of HHV-8. All positive samples were confirmed for the presence of anti-HHV-8 antibodies using an indirect immunofluorescence assay (IFA). The IFA kit is intended to detect primary, latent, persistent, or reactivated infection of HHV-8. Of the 165 males, 43 (26.06%) were positive by ELISA while 26 (15.8%) were also positive by IFA. Seroprevalence decreased with increasing age (p<0.05). Factors independently associated with HHV-8 infection were younger age group and alcohol consumption. These findings suggest that even in a heterosexual population, HHV-8 can be transmitted frequently.


Assuntos
Infecções por HIV/epidemiologia , Herpesvirus Humano 8 , Sarcoma de Kaposi/epidemiologia , Adolescente , Adulto , Fatores Etários , Coinfecção/epidemiologia , Coinfecção/virologia , Técnica Indireta de Fluorescência para Anticorpo , Infecções por HIV/virologia , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Fatores de Risco , Sarcoma de Kaposi/virologia , Estudos Soroepidemiológicos , Comportamento Sexual/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA