Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(9): 1202-1220, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885356

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Linfócitos do Interstício Tumoral , Nivolumabe , Linfócitos T , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/patologia , Nivolumabe/uso terapêutico , Nivolumabe/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Masculino , Recidiva Local de Neoplasia/imunologia , Idoso , Pessoa de Meia-Idade , Ativação Linfocitária/imunologia , Regulação para Cima , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia
2.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
3.
Sci Signal ; 14(711): eabc4520, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34846918

RESUMO

Aberrant activation of the RAS family of guanosine triphosphatases (GTPases) is prevalent in lung adenocarcinoma, with somatic mutation of KRAS occurring in ~30% of tumors. We previously identified somatic mutations and amplifications of the gene encoding RAS family GTPase RIT1 in lung adenocarcinomas. To explore the biological pathways regulated by RIT1 and how they relate to the oncogenic KRAS network, we performed quantitative proteomic, phosphoproteomic, and transcriptomic profiling of isogenic lung epithelial cells in which we ectopically expressed wild-type or cancer-associated variants of RIT1 and KRAS. We found that both mutant KRAS and mutant RIT1 promoted canonical RAS signaling and that overexpression of wild-type RIT1 partially phenocopied oncogenic RIT1 and KRAS, including induction of epithelial-to-mesenchymal transition. Our findings suggest that RIT1 protein abundance is a factor in its pathogenic function. Therefore, chromosomal amplification of wild-type RIT1 in lung and other cancers may be tumorigenic.


Assuntos
Oncogenes , Transdução de Sinais , Proteínas ras , Células HEK293 , Humanos , Proteínas ras/genética
4.
Mol Syst Biol ; 17(9): e10156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569154

RESUMO

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.


Assuntos
Fosfoproteínas , Proteômica , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais
5.
Br J Haematol ; 185(4): 708-712, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30788840

RESUMO

Mantle cell lymphoma (MCL), a malignancy of B-lymphocytes, has a poor prognosis. It is thus necessary to improve the understanding of the pathobiology of MCL and identify factors contributing to its aggressiveness. Our studies, based on Affymetrix data from 17 MCL biopsies, real-time quantitative polymerase chain reaction data from 18 sorted primary MCL cells and 108 MCL biopsies compared to non-malignant tissue, reveals that GNAZ expression predicts poor clinical outcome of MCL patients (Cox regression, P = 0·014) and lymphocytosis (Mann-Whitney, P = 0·011). We show that GNAZ translates to Gαz protein - a signalling molecule within the G-protein coupled receptor network. Our findings suggest that GNAZ/Gαz contribute to the MCL pathobiology.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Linfoma de Célula do Manto/mortalidade , Regulação para Baixo/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Estimativa de Kaplan-Meier , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , RNA/metabolismo , Interferência de RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
6.
Mol Cell Proteomics ; 18(3): 576-593, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563849

RESUMO

Signaling pathways are orchestrated by post-translational modifications (PTMs) such as phosphorylation. However, pathway analysis of PTM data sets generated by mass spectrometry (MS)-based proteomics is typically performed at a gene-centric level because of the lack of appropriately curated PTM signature databases and bioinformatic tools that leverage PTM site-specific information. Here we present the first version of PTMsigDB, a database of modification site-specific signatures of perturbations, kinase activities and signaling pathways curated from more than 2,500 publications. We adapted the widely used single sample Gene Set Enrichment Analysis approach to utilize PTMsigDB, enabling PTMSignature Enrichment Analysis (PTM-SEA) of quantitative MS data. We used a well-characterized data set of epidermal growth factor (EGF)-perturbed cancer cells to evaluate our approach and demonstrated better representation of signaling events compared with gene-centric methods. We then applied PTM-SEA to analyze the phosphoproteomes of cancer cells treated with cell-cycle inhibitors and detected mechanism-of-action specific signatures of cell cycle kinases. We also applied our methods to analyze the phosphoproteomes of PI3K-inhibited human breast cancer cells and detected signatures of compounds inhibiting PI3K as well as targets downstream of PI3K (AKT, MAPK/ERK) covering a substantial fraction of the PI3K pathway. PTMsigDB and PTM-SEA can be freely accessed at https://github.com/broadinstitute/ssGSEA2.0.


Assuntos
Neoplasias da Mama/metabolismo , Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Curadoria de Dados , Bases de Dados de Proteínas , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos
7.
Cancer Cell ; 34(3): 396-410.e8, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205044

RESUMO

There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Meduloblastoma/patologia , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Linhagem Celular Tumoral , Criança , Pré-Escolar , Metilação de DNA , Proteína Quinase Ativada por DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Lactente , Masculino , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Análise de Sequência de RNA , Adulto Jovem
8.
Nat Protoc ; 13(7): 1632-1661, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29988108

RESUMO

Here we present an optimized workflow for global proteome and phosphoproteome analysis of tissues or cell lines that uses isobaric tags (TMT (tandem mass tags)-10) for multiplexed analysis and relative quantification, and provides 3× higher throughput than iTRAQ (isobaric tags for absolute and relative quantification)-4-based methods with high intra- and inter-laboratory reproducibility. The workflow was systematically characterized and benchmarked across three independent laboratories using two distinct breast cancer subtypes from patient-derived xenograft models to enable assessment of proteome and phosphoproteome depth and quantitative reproducibility. Each plex consisted of ten samples, each being 300 µg of peptide derived from <50 mg of wet-weight tissue. Of the 10,000 proteins quantified per sample, we could distinguish 7,700 human proteins derived from tumor cells and 3100 mouse proteins derived from the surrounding stroma and blood. The maximum deviation across replicates and laboratories was <7%, and the inter-laboratory correlation for TMT ratio-based comparison of the two breast cancer subtypes was r > 0.88. The maximum deviation for the phosphoproteome coverage was <24% across laboratories, with an average of >37,000 quantified phosphosites per sample and differential quantification correlations of r > 0.72. The full procedure, including sample processing and data generation, can be completed within 10 d for ten tissue samples, and 100 samples can be analyzed in ~4 months using a single LC-MS/MS instrument. The high quality, depth, and reproducibility of the data obtained both within and across laboratories should enable new biological insights to be obtained from mass spectrometry-based proteomics analyses of cells and tissues together with proteogenomic data integration.


Assuntos
Neoplasias da Mama/patologia , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Fosfoproteínas/análise , Proteoma/análise , Proteômica/métodos , Animais , Benchmarking , Modelos Animais de Doenças , Feminino , Xenoenxertos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Camundongos , Transplante de Neoplasias , Fluxo de Trabalho
9.
Cancer Res ; 78(10): 2732-2746, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29472518

RESUMO

Activation of PI3K signaling is frequently observed in triple-negative breast cancer (TNBC), yet PI3K inhibitors have shown limited clinical activity. To investigate intrinsic and adaptive mechanisms of resistance, we analyzed a panel of patient-derived xenograft models of TNBC with varying responsiveness to buparlisib, a pan-PI3K inhibitor. In a subset of patient-derived xenografts, resistance was associated with incomplete inhibition of PI3K signaling and upregulated MAPK/MEK signaling in response to buparlisib. Outlier phosphoproteome and kinome analyses identified novel candidates functionally important to buparlisib resistance, including NEK9 and MAP2K4. Knockdown of NEK9 or MAP2K4 reduced both baseline and feedback MAPK/MEK signaling and showed synthetic lethality with buparlisib in vitro A complex in/del frameshift in PIK3CA decreased sensitivity to buparlisib via NEK9/MAP2K4-dependent mechanisms. In summary, our study supports a role for NEK9 and MAP2K4 in mediating buparlisib resistance and demonstrates the value of unbiased omic analyses in uncovering resistance mechanisms to targeted therapy.Significance: Integrative phosphoproteogenomic analysis is used to determine intrinsic resistance mechanisms of triple-negative breast tumors to PI3K inhibition. Cancer Res; 78(10); 2732-46. ©2018 AACR.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Morfolinas/farmacologia , Quinases Relacionadas a NIMA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
BMC Cell Biol ; 18(1): 34, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216821

RESUMO

BACKGROUND: The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. RESULTS: We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-ß pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκß, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. CONCLUSION: Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate.


Assuntos
Ciclo Celular/genética , Núcleo Celular/metabolismo , Redes Reguladoras de Genes , Sinais de Localização Nuclear/genética , Transdução de Sinais , Sindecana-1/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibrossarcoma/genética , Fibrossarcoma/fisiopatologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Humanos , Sinais de Localização Nuclear/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteoma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nature ; 534(7605): 55-62, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251275

RESUMO

Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genômica , Mutação/genética , Proteômica , Transdução de Sinais , Neoplasias da Mama/classificação , Neoplasias da Mama/enzimologia , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Classe I de Fosfatidilinositol 3-Quinases , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína Supressora de Tumor p53/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
12.
Biomed Res Int ; 2014: 419853, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147801

RESUMO

BACKGROUND: The distinction between malignant and benign pleural effusions is a diagnostic challenge today and measuring soluble biomarkers could add to the diagnostic accuracy. Syndecan-1 is a proteoglycan involved in various cellular functions and is cleaved from the cell surface in a regulated manner. The shed fragment, which can be recovered in effusion supernatant and in serum, retains its binding capacities, but often with different functions and signalling properties than the cell-bound form. AIM: This study aimed to investigate the diagnostic and prognostic value of soluble syndecan-1 in pleural effusions and sera from patients with pleural malignancies. STUDY DESIGN: Using two cohorts of patients, we assessed the diagnostic and prognostic value of soluble syndecan-1 in pleural effusions and sera, using enzyme-linked immunosorbent assays. RESULTS: In pleural effusions, syndecan-1 distinguished malignant and benign diseases, with an odds ratio of 8.59 (95% CI 3.67 to 20.09). Furthermore, syndecan-1 in pleural effusions predicted a survival difference for patients with pleural metastatic disease and malignant mesothelioma of 11.2 and 9.2 months, respectively. However, no such effects were seen when syndecan-1 was measured in serum. CONCLUSION: Soluble syndecan-1 is a promising candidate biomarker for the cytopathological diagnosis and prognostication of malignant pleural effusions.


Assuntos
Derrame Pleural Maligno/sangue , Derrame Pleural Maligno/diagnóstico , Sindecana-1/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/sangue , Mesotelioma/diagnóstico , Mesotelioma/patologia , Mesotelioma Maligno , Pessoa de Meia-Idade , Derrame Pleural Maligno/patologia , Prognóstico
13.
Mol Cell Proteomics ; 13(3): 701-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361865

RESUMO

Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome furthers our understanding of malignant mesothelioma, identified galectin 1 as a potential diagnostic biomarker, and highlighted several possible prognostic biomarkers of this disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Galectina 1/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Mesotelioma/diagnóstico , Mesotelioma/metabolismo , Derrame Pleural/diagnóstico , Proteoma/metabolismo , Proteômica/métodos , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Análise Discriminante , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Estimativa de Kaplan-Meier , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas , Mesotelioma Maligno , Pessoa de Meia-Idade , Modelos Biológicos , Análise Multivariada , Derrame Pleural/metabolismo , Análise de Componente Principal , Prognóstico , Curva ROC , Reprodutibilidade dos Testes
14.
PLoS One ; 8(8): e72030, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991032

RESUMO

PURPOSE: Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. PATIENTS AND METHODS: Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. RESULTS: Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39), N-ERC/mesothelin (4.81, 3.19-7.93), CERC/mesothelin (3.58, 2.43-5.59) and syndecan-1 (1.34, 1.03-1.77). A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00) in the model generation dataset and 0.83 (0.74-0.91) in the validation dataset, respectively. CONCLUSIONS: A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.


Assuntos
Biomarcadores Tumorais/análise , Proteínas Ligadas por GPI/análise , Ácido Hialurônico/análise , Mesotelioma/diagnóstico , Derrame Pleural Maligno/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Modelos Logísticos , Masculino , Mesotelina , Mesotelioma/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Osteopontina/análise , Derrame Pleural/metabolismo , Derrame Pleural Maligno/metabolismo , Estudos Prospectivos , Curva ROC , Sindecana-1/análise , Sindecana-2/análise , Tiorredoxinas/análise
15.
PLoS One ; 8(6): e65903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840376

RESUMO

BACKGROUND: Malignant mesothelioma cells have an epithelioid or sarcomatoid morphology, both of which may be present in the same tumor. The sarcomatoid phenotype is associated with worse prognosis and heterogeneity of mesothelioma cells may contribute to therapy resistance, which is often seen in mesothelioma. This study aimed to investigate differences in sensitivity between mesothelioma cell lines to anti-cancer drugs. We studied two novel drugs, selenite and bortezomib and compared their effect to four conventional drugs. We also investigated the immunoreactivity of potential predictive markers for drug sensitivity; Pgp, MRP-1, ERCC1, RRM1, TS, xCT and proteasome 20S subunit. MATERIALS AND METHODS: We treated six mesothelioma cell lines with selenite, bortezomib, carboplatin, pemetrexed, doxorubicin or gemcitabine as single agents and in combinations. Viability was measured after 24 and 48 hours. Immunocytochemistry was used to detect predictive markers. RESULTS: As a single agent, selenite was effective on four out of six cell lines, and in combination with bortezomib yielded the greatest response in the studied mesothelioma cell lines. Cells with an epithelioid phenotype were generally more sensitive to the different drugs than the sarcomatoid cells. Extensive S-phase arrest was seen in pemetrexed-sensitive cell lines. MRP-1 predicted sensitivity of cell lines to treatment with carboplatin and xCT predicted pemetrexed effect. CONCLUSIONS: The observed heterogeneity in sensitivity of mesothelioma cell lines with different morphology highlights the need for more individualized therapy, requiring development of methods to predict drug sensitivity of individual tumors. Selenite and bortezomib showed a superior effect compared to conventional drugs, motivating clinical testing of these agents as future treatment regime components for patients with malignant mesothelioma.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Pirazinas/farmacologia , Ácido Selenioso/farmacologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Biomarcadores Tumorais/metabolismo , Bortezomib , Carboplatina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Glutamatos/farmacologia , Guanina/análogos & derivados , Guanina/farmacologia , Humanos , Mesotelioma Maligno , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pemetrexede , Gencitabina
16.
Nat Commun ; 4: 2175, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868472

RESUMO

About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia , Receptores do Ácido Retinoico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Especificidade de Órgãos , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Análise de Sobrevida , Tamoxifeno/uso terapêutico
17.
PLoS One ; 7(10): e48091, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144729

RESUMO

Malignant pleural mesothelioma is a highly malignant tumor, originating from mesothelial cells of the serous cavities. In mesothelioma the expression of syndecan-1 correlates to epithelioid morphology and inhibition of growth and migration. Our previous data suggest a complex role of syndecan-1 in mesothelioma cell proliferation although the exact underlying molecular mechanisms are not completely elucidated. The aim of this study is therefore to disclose critical genes and pathways affected by syndecan-1 in mesothelioma; in order to better understand its importance for tumor cell growth and proliferation. We modulated the expression of syndecan-1 in a human mesothelioma cell line via both overexpression and silencing, and followed the transcriptomic responses with microarray analysis. To project the transcriptome analysis on the full-dimensional picture of cellular regulation, we applied pathway analysis using Ingenuity Pathway Analysis (IPA) and a novel method of network enrichment analysis (NEA) which elucidated signaling relations between differentially expressed genes and pathways acting via various molecular mechanisms. Syndecan-1 overexpression had profound effects on genes involved in regulation of cell growth, cell cycle progression, adhesion, migration and extracellular matrix organization. In particular, expression of several growth factors, interleukins, and enzymes of importance for heparan sulfate sulfation pattern, extracellular matrix proteins and proteoglycans were significantly altered. Syndecan-1 silencing had less powerful effect on the transcriptome compared to overexpression, which can be explained by the already low initial syndecan-1 level of these cells. Nevertheless, 14 genes showed response to both up- and downregulation of syndecan-1. The "cytokine - cytokine-receptor interaction", the TGF-ß, EGF, VEGF and ERK/MAPK pathways were enriched in both experimental settings. Most strikingly, nearly all analyzed pathways related to cell cycle were enriched after syndecan-1 silencing and depleted after syndecan-1 overexpression. Syndecan-1 regulates proliferation in a highly complex way, although the exact contribution of the altered pathways necessitates further functional studies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/genética , Sindecana-1/genética , Transcriptoma , Apoptose/genética , Adesão Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sindecana-1/metabolismo
18.
PLoS One ; 6(6): e14816, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731601

RESUMO

BACKGROUND: Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.


Assuntos
Movimento Celular , Mesoderma/metabolismo , Mesoderma/patologia , Sindecana-1/química , Sindecana-1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Quimiotaxia/genética , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência/genética , Relação Estrutura-Atividade
19.
J Exp Clin Cancer Res ; 28: 92, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19563663

RESUMO

BACKGROUND: Selenite is a promising anticancer agent which has been shown to induce apoptosis in malignant mesothelioma cells in a phenotype-dependent manner, where cells of the chemoresistant sarcomatoid phenotype are more sensitive. METHODS: In this paper, we investigate the apoptosis signalling mechanisms in sarcomatoid and epithelioid mesothelioma cells after selenite treatment. Apoptosis was measured with the Annexin-PI assay. The mitochondrial membrane potential, the expression of Bax, Bcl-XL, and the activation of caspase-3 were assayed with flow cytometry and a cytokeratin 18 cleavage assay. Signalling through JNK, p38, p53, and cathepsins B, D, and E was investigated with chemical inhibitors. Furthermore, the expression, nuclear translocation and DNA-binding activity of p53 was investigated using ICC, EMSA and the monitoring of p21 expression as a downstream event. Levels of thioredoxin (Trx) were measured by ELISA. RESULTS: In both cell lines, 10 microM selenite caused apoptosis and a marked loss of mitochondrial membrane potential. Bax was up-regulated only in the sarcomatoid cell line, while the epithelioid cell line down-regulated Bcl-XL and showed greater caspase-3 activation. Nuclear translocation of p53 was seen in both cell lines, but very little p21 expression was induced. Chemical inhibition of p53 did not protect the cells from apoptosis. p53 lost its DNA binding ability after selenite treatment and was enriched in an inactive form. Levels of thioredoxin decreased after selenite treatment. Chemical inhibition of MAP kinases and cathepsins showed that p38 and cathepsin B had some mediatory effect while JNK had an anti-apoptotic role. CONCLUSION: We delineate pathways of apoptosis signalling in response to selenite, showing differences between epithelioid and sarcomatoid mesothelioma cells. These differences may partly explain why sarcomatoid cells are more sensitive to selenite.


Assuntos
Apoptose/efeitos dos fármacos , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Transdução de Sinais/efeitos dos fármacos , Selenito de Sódio/farmacologia , Caspase 3/metabolismo , Proliferação de Células , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tiorredoxinas , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA