Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 233(5): 2185-2202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931304

RESUMO

Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.


Assuntos
Nicotiana , Tubo Polínico , Membrana Celular/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Fosfatidilinositóis/metabolismo , Nicotiana/metabolismo
2.
Nat Plants ; 7(5): 587-597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34007035

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a low-abundance membrane lipid essential for plasma membrane function1,2. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P2 production is involved in development, immunity and reproduction3-5. However, phospholipid synthesis is highly intricate6. It is thus likely that steady-state depletion of PI(4,5)P2 triggers confounding indirect effects. Furthermore, inducible tools available in plants allow PI(4,5)P2 to increase7-9 but not decrease, and no PIP5K inhibitors are available. Here, we introduce iDePP (inducible depletion of PI(4,5)P2 in plants), a system for the inducible and tunable depletion of PI(4,5)P2 in plants in less than three hours. Using this strategy, we confirm that PI(4,5)P2 is critical for various aspects of plant development, including root growth, root-hair elongation and organ initiation. We show that PI(4,5)P2 is required to recruit various endocytic proteins, including AP2-µ, to the plasma membrane, and thus to regulate clathrin-mediated endocytosis. Finally, we find that inducible PI(4,5)P2 perturbation impacts the dynamics of the actin cytoskeleton as well as microtubule anisotropy. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses, and also to evaluate the importance of this lipid in protein localization.


Assuntos
Arabidopsis/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Inositol Polifosfato 5-Fosfatases/genética , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfolipídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
Plant Cell Physiol ; 62(1): 80-91, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33165601

RESUMO

Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Proteínas de Cloroplastos/fisiologia , Resposta ao Choque Frio , Lipídeos de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Lipídeos de Membrana/análise , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo
4.
Plant Cell Physiol ; 59(10): 2004-2019, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107538

RESUMO

Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-ß-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento
5.
Plant Cell Physiol ; 59(3): 469-486, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309666

RESUMO

Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-ß-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Germinação/genética , Mutação com Perda de Função , Pressão Osmótica/efeitos dos fármacos , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato , Fosfoinositídeo Fosfolipase C/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
6.
Development ; 144(19): 3578-3589, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851711

RESUMO

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Homeostase , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia , Apoptose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Floema/citologia , Floema/efeitos dos fármacos , Floema/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/metabolismo
7.
Plant Cell Physiol ; 58(7): 1185-1195, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158631

RESUMO

Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phospholipid known to be associated with a wide variety of physiological functions in plants. However, the localization and dynamics of PI(3,5)P2 in plant cells remain largely unknown, partially due to the lack of an effective fluorescent probe. Using Arabidopsis transgenic plant expressing the PI(3,5)P2-labeling fluorescent probe (tagRFP-ML1N*2) developed based on a tandem repeat of the cytosolic phosphoinositide-interacting domain (ML1N) of the mammalian lysosomal transient receptor potential cation channel, Mucolipin 1 (TRPML1), here we show that PI(3,5)P2 is predominantly localized on the limited membranes of the FAB1- and SNX1-positive late endosomes, but rarely localized on the membranes of plant vacuoles or trans-Golgi network/early endosomes of cortical cells of the root differentiation zone. The late endosomal localization of tagRFP-ML1N*2 is reduced or abolished by pharmacological inhibition or genetic knockdown of expression of genes encoding PI(3,5)P2-synthesizing enzymes, FAB1A/B, but markedly increased with FAB1A overexpression. Notably, reactive oxygen species (ROS) significantly increase late endosomal levels of PI(3,5)P2. Thus, tandem ML1N-based PI(3,5)P2 probes can reliably monitor intracellular dynamics of PI(3,5)P2 in Arabidopsis cells with less binding activity to other endomembrane organelles.


Assuntos
Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Endossomos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Microscopia Confocal , Fosfatidilinositóis/análise , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Proteína Vermelha Fluorescente
8.
Plant Cell Physiol ; 58(7): 1196-1207, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158855

RESUMO

Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.


Assuntos
Arabidopsis/metabolismo , Diglicerídeos/metabolismo , Arabidopsis/citologia , Técnicas Biossensoriais , Membrana Celular/metabolismo , Células Cultivadas , Citocinese , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Ésteres de Forbol/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Domínios Proteicos , Proteína Quinase C/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Rede trans-Golgi/metabolismo
9.
Plant Cell Physiol ; 58(1): 120-129, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803131

RESUMO

Phosphoinositides play an important role in various membrane trafficking events in eukaryotes. One of them, however, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], has not been studied widely in plants. Using a combination of fluorescent reporter proteins and the PI(3,5)P2-specific inhibitor YM202636, here we demonstrated that in Arabidopsis thaliana, PI(3,5)P2 affects various membrane trafficking events, mostly in the post-Golgi routes. We found that YM201636 treatment effectively reduced PI(3,5)P2 concentration not only in the wild type but also in FAB1A-overexpressing Arabidopsis plants. In particular, reduced PI(3,5)P2 levels caused abnormal membrane dynamics of plasma membrane proteins, AUX1 and BOR1, with different trafficking patterns. Secretion and morphological characteristics of late endosomes and vacuoles were also affected by the decreased PI(3,5)P2 production. These pleiotropic defects in the post-Golgi trafficking events were caused by the inhibition of PI(3,5)P2 production. This effect is probably mediated by the inhibition of maturation of FAB1-positive late endosomes, thereby impairing late endosome function. In conclusion, our results imply that in Arabidopsis, late endosomes are involved in multiple post-Golgi membrane trafficking routes including not only vacuolar trafficking and endocytosis but also secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminopiridinas/farmacologia , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pleiotropia Genética/genética , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Mutação , Fosfatos de Fosfatidilinositol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
10.
Biochim Biophys Acta ; 1858(11): 2709-2716, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27480805

RESUMO

Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas de Arabidopsis/química , Membrana Celular/química , Lipossomos/química , Ácidos Fosfatídicos/química , Proteínas Recombinantes de Fusão/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/química , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bioensaio , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Lipossomos/metabolismo , Lisofosfatidilcolinas/farmacologia , Proteínas de Ligação a Fosfato , Ácidos Fosfatídicos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nat Commun ; 7: 11710, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271794

RESUMO

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Assuntos
Ácidos/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia
12.
Plant Physiol ; 169(3): 1961-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353760

RESUMO

Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Microtúbulos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Ácidos Indolacéticos/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Mutação , Fosfatos/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(7): 2818-23, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550313

RESUMO

Phosphatidylinositol (PtdIns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, PtdIns3P and PtdIns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vacuolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with PtdIns3P, the presumable product of their activity. In SAC gain- and loss-of-function mutants, the levels of PtdIns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with PtdIns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Primers do DNA/genética , Evolução Molecular , Microscopia Eletrônica de Transmissão , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas Fosfatases/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Vacúolos/metabolismo , Vacúolos/fisiologia , Vacúolos/ultraestrutura
14.
Methods Mol Biol ; 1009: 17-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681519

RESUMO

Detection of polyphosphoinositides (PPIs) is difficult due to their low chemical abundancy. This problem is further complicated by the fact that PPIs are present as various, distinct isomers, which are difficult, if not impossible, to separate by conventional thin layer chromatography (TLC) systems. PPIs in plants include PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,5)P 2, and PtdIns(4,5)P 2. Here, a protocol is described analyzing plant PPIs using (32)P-orthophosphorus pre-labeled material. After extraction, lipids are deacylated and the resulting glycerophosphoinositol polyphosphates (GroPInsPs) separated by HPLC using a strong anion-exchange column and a shallow salt gradient. Alternatively, PPIs are first separated by TLC, the lipids reisolated, deacylated, and the GroPInsPs then separated by HPLC.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fosfatos de Fosfatidilinositol/análise , Acilação , Resinas de Troca Aniônica , Cromatografia em Camada Fina , Fosfatos de Inositol/análise , Radioisótopos de Fósforo , Fosforilação , Trítio
15.
Methods Mol Biol ; 1009: 3-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681518

RESUMO

Lipidomic analyses through LC-, GC-, and ESI-MS/MS can detect numerous lipid species based on headgroup and fatty acid compositions but usually miss the minor phospholipids involved in cell signaling because of their low chemical abundancy. Due to their high turnover, these signaling lipids are, however, readily picked up by labeling plant material with (32)P-orthophosphate and subsequent analysis of the lipid extracts by thin layer chromatography. Here, protocols are described for suspension-cultured tobacco BY-2 cells, young Arabidopsis seedlings, Vicia faba roots, and Arabidopsis leaf disks, which can easily be modified for other plant species and tissues.


Assuntos
Arabidopsis/metabolismo , Cromatografia em Camada Fina/métodos , Marcação por Isótopo , Fosfolipídeos/metabolismo , Plantas/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Fosfolipídeos/isolamento & purificação , Radioisótopos de Fósforo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Suspensões , Nicotiana/citologia , Nicotiana/metabolismo , Vicia/citologia , Vicia/metabolismo
16.
Methods Mol Biol ; 1009: 219-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681537

RESUMO

Phospholipase D (PLD) hydrolyzes structural phospholipids like phosphatidylcholine (PC) and phosphatidylethanolamine (PE) into phosphatidic acid (PA) and free choline/ethanolamine. In plants, this activity can be stimulated by a wide variety of biotic and abiotic stresses (Li et al., Biochim Biophys Acta 1791:927-935, 2009; Testerink and Munnik, J Exp Bot 62(7):2349-2361, 2011). This chapter describes a protocol for the measurement of PLD activity in vivo. The protocol takes advantage of a unique property of PLD, i.e., its ability to substitute a primary alcohol, such as 1-butanol, for water in the hydrolytic reaction. This transphosphatidylation reaction results in the formation of phosphatidylbutanol (PBut), which is a specific and unique reporter for PLD activity. The assay is highly sensitive for detecting PLD activity in vivo, following stimulation of intact plant cells, seedlings, and tissues, being a valuable method for studying the regulation of plant PLD activity in vivo.


Assuntos
Ensaios Enzimáticos/métodos , Fosfolipase D/metabolismo , Arabidopsis/enzimologia , Cromatografia em Camada Fina , Células Vegetais/enzimologia , Estômatos de Plantas/citologia , Estômatos de Plantas/enzimologia , Plântula/enzimologia , Suspensões , Nicotiana/citologia , Nicotiana/enzimologia , Vicia/enzimologia
17.
J Lipid Res ; 52(11): 2012-20, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900174

RESUMO

The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo ³²P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential ³²P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.


Assuntos
Chlamydomonas/efeitos dos fármacos , Chlamydomonas/metabolismo , Diacilglicerol Quinase/metabolismo , Lisofosfolipídeos/metabolismo , Fosfolipases A2/metabolismo , Sais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Chlamydomonas/citologia , Chlamydomonas/fisiologia , Hidrólise/efeitos dos fármacos , Lisofosfolipídeos/biossíntese , Transdução de Sinais/efeitos dos fármacos
18.
Curr Opin Plant Biol ; 14(5): 489-97, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775194

RESUMO

Plant genomes lack homologues of the inositol 1,4,5-trisphosphate receptor and protein kinase C, which are important components of the canonical phospholipase C signalling system in animals. Instead, plants seem to utilize alternative downstream signalling molecules, that is, InsP(6) and phosphatidic acid. Inositol lipids may also function as second messengers themselves. By reversible phosphorylation of the inositol headgroup, five biologically active plant polyphosphoinositides can be detected. Protein targets interact with specific polyphosphoinositide isomers via selective lipid-binding domains, thereby altering their intracellular localization and/or enzymatic activity. Such lipid-binding domains have also been used to create GFP based-lipid biosensors to visualize PPIs dynamics in vivo. Here, we highlight some recent advances and ideas on PPIs' role in plant signalling.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Transdução de Sinais , Nicotiana/citologia , Nicotiana/metabolismo
19.
Plant Cell Environ ; 33(4): 655-69, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429089

RESUMO

Polyphosphoinositides (PPIs) became famous for their role in inositol-1,4,5-trisphosphate (InsP3) mediated-Ca(2+) signalling in mammalian cells, generated through signal-activated phospholipase C (PLC) hydrolysis of the minor membrane lipid, phosphatidylinositol-4,5-bisphosphate. For many years, the plant field followed the same paradigm, however, slowly a completely different picture is emerging. Moreover, various novel PPI-signalling compounds have been identified meanwhile, with new functions and targets coming to light. These include lipids phosphorylated at the D3-position of inositol but also water-soluble inositolpolyphosphates (IPPs). For several of them, a relationship to water stress has been reported. This review summarizes the current status of PPIs and IPPs in plants and discusses their potential in osmotic stress signalling and drought.


Assuntos
Fosfatos de Inositol/metabolismo , Osmose , Fosfatos de Fosfatidilinositol/metabolismo , Plantas/metabolismo , Transdução de Sinais , Secas , Estresse Fisiológico , Água/metabolismo
20.
Plant J ; 62(2): 224-39, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20088897

RESUMO

The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum lycopersicum (Sl)] PLC gene family. Six Sl PLC-encoding cDNAs were isolated and their expression in response to infection with the pathogenic fungus Cladosporium fulvum was studied. We found significant regulation at the transcriptional level of the various SlPLCs, and SlPLC4 and SlPLC6 showed distinct expression patterns in C. fulvum-resistant Cf-4 tomato. We produced the encoded proteins in Escherichia coli and found that both genes encode catalytically active PI-PLCs. To test the requirement of these Sl PLCs for full Cf-4-mediated recognition of the effector Avr4, we knocked down the expression of the encoding genes by virus-induced gene silencing. Silencing of SlPLC4 impaired the Avr4/Cf-4-induced HR and resulted in increased colonisation of Cf-4 plants by C. fulvum expressing Avr4. Furthermore, expression of the gene in Nicotiana benthamiana enhanced the Avr4/Cf-4-induced HR. Silencing of SlPLC6 did not affect HR, whereas it caused increased colonisation of Cf-4 plants by the fungus. Interestingly, Sl PLC6, but not Sl PLC4, was also required for resistance to Verticillium dahliae, mediated by the transmembrane Ve1 resistance protein, and to Pseudomonas syringae, mediated by the intracellular Pto/Prf resistance protein couple. We conclude that there is a differential requirement of PLC isoforms for the plant immune response and that Sl PLC4 is specifically required for Cf-4 function, while Sl PLC6 may be a more general component of resistance protein signalling.


Assuntos
Imunidade Inata , Fosfoinositídeo Fosfolipase C/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Cladosporium , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Família Multigênica , Fosfoinositídeo Fosfolipase C/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de DNA , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA