Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
IET Nanobiotechnol ; 16(9): 295-304, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200801

RESUMO

Human pluripotent stem cells (hPSCs) can be proliferated on completely synthetic materials under xeno-free cultivation conditions using biomaterials grafted with extracellular matrix protein (ECM)-derived peptides. However, cell culture biomaterials grafted with ECM-derived peptides must be prepared using a high concentration of peptide reaction solution (e.g. 1000 µg/ml), whereas the ECM concentration of the ECM-coated surface for hPSC culture is typically 5 µg/ml. We designed a polyethylene glycol (PEG) joint nanosegment (linker) to be used between base cell culture biomaterials and bioactive ECM-derived peptides to enhance the probability of contact between ECM-derived peptides and cell binding receptors of hPSCs. Vitronectin-derived peptides with glycine joint nanosegments (GCGG) were conjugated onto poly (vinyl alcohol-co-itaconic acid) hydrogels via PEG joint nanosegments, and human embryonic stem cells (hESCs) were cultivated on these hydrogels. hESCs could successfully be cultivated on hydrogels while maintaining their pluripotency and differentiation potential to differentiate into cells that are induced from three germ layers in vitro and in vivo, where only a 50 µg/ml ECM-derived peptide concentration was used when the PEG joint nanosegments were introduced into peptides that were grafted onto hydrogel surfaces. The joint nanosegments between bioactive peptides and base cell culture biomaterials were found to contribute to efficient hESC attachment and proliferation.


Assuntos
Células-Tronco Embrionárias Humanas , Hidrogéis , Humanos , Polietilenoglicóis , Proteínas da Matriz Extracelular , Peptídeos/farmacologia , Álcool de Polivinil , Materiais Biocompatíveis/farmacologia , Células Cultivadas
2.
Mater Sci Eng C Mater Biol Appl ; 100: 676-687, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948104

RESUMO

Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction. The chemical function and crystalline nature of the synthesized nanocarrier was characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction Analysis (XRD). The surface morphological study was carried out through Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The in-vitro drug release profile of DOX was carried out by UV-Vis spectrometer at the λmax value of 480 nm. The entrapment of DOX on GO-κ-car-biotin has been observed at 94%. The hydrophilic DOX drug has excellent pH-sensitive drug released in an in-vitro study. The anticancer efficiency of the synthesized GO-based nanocarrier was examined using HeLa cell line in-vitro. Cell viability, proliferation, cytotoxicity, and nuclear chromatin condensation was studied by trypan blue assay, triphosphate assay (ATP), lactate dehydrogenase assay (LDH) and Hoechst staining respectively. Finally, biotin leading GO-κ-Car carrier demonstrated is a promising drug delivery system for cervical cancer treatment.


Assuntos
Biotina/química , Carragenina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Grafite/química , Nanopartículas/química , Trifosfato de Adenosina/metabolismo , Carragenina/síntese química , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
3.
Regen Ther ; 9: 100-110, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30525080

RESUMO

INTRODUCTION: Anti-tuberculosis agent rifampicin is extensively used for its effectiveness. Possible complications of tuberculosis and prolonged rifampicin treatment include kidney damage; these conditions can lead to reduced efficiency of the affected kidney and consequently to other diseases. Bone marrow-derived mesenchymal stem cells (BMMSCs) can be used in conjunction with rifampicin to avert kidney damage; because of its regenerative and differentiating potentials into kidney cells. This research was designed to assess the modulatory and regenerative potentials of MSCs in averting kidney damage due to rifampicin-induced kidney toxicity in Wistar rats and their progenies. BMMSCs used in this research were characterized according to the guidelines of International Society for Cellular Therapy. METHODS: The rats (male and female) were divided into three experimental groups, as follows: Group 1: control rats (4 males & 4 females); Group 2: rats treated with rifampicin only (4 males & 4 females); and Group 3: rats treated with rifampicin plus MSCs (4 males & 4 females). Therapeutic doses of rifampicin (9 mg/kg/day for 3-months) and MSCs infusions (twice/month for 3-months) were administered orally and intravenously respectively. At the end of the three months, the animals were bred together to determine if the effects would carry over to the next generation. Following breeding, the rats were sacrificed to harvest serum for biochemical analysis and the kidneys were also harvested for histological analysis and quantification of the glomeruli size, for the adult rats and their progenies. RESULTS: The results showed some level of alterations in the biochemical indicators and histopathological damage in the rats that received rifampicin treatment alone, while the control and stem cells treated group showed apparently normal to nearly normal levels of both bio-indicators and normal histological architecture. CONCLUSIONS: Intravenous administration of MSCs yielded sensible development, as seen from biochemical indicators, histology and the quantitative cell analysis, hence implying the modulatory and regenerative properties of MSCs.

4.
Arch Med Sci ; 14(6): 1281-1288, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30393482

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is common, with a worldwide incidence estimated at more than 1 million cases annually. Therefore, the search for agents for CRC treatment is highly warranted. Inositol-6 phosphate (IP6) is enriched in rice bran and possesses many beneficial effects. In the present study the effect of IP6 on autophagy-mediated death by modulating the mTOR pathway in HT-29 colon cancer cells was studied. MATERIAL AND METHODS: Autophagy was assessed by acridine orange (AO) staining, transmission electron microscopy, and western blotting to detect LC3-II and Beclin 1. Akt/mTOR signaling protein expression was also analyzed by western blotting. Apoptosis was analyzed by annexin V staining. RESULTS: Incubation of cells with IP6 resulted in downregulation of the p-Akt at 3h. Along with that confocal microscopic analysis of p-AKT, IP6 administration resulted that a diminished expression of p-Akt. mTOR pathway regulates autophagy and incubation with IP6 to HT-29 cells showed decreased expression of p-70S6Kinase, 4-EBP-1 in a time-dependent manner. Inositol-6 phosphate (10 µg/ml, 24 and 48 h) induced autophagic vesicles, as confirmed by AO staining and transmission electron microscopy. We also found increased expression of LC3-II and Beclin 1 in a time-dependent manner after incubation with IP6. Furthermore, IP6 induced apoptosis, as revealed by annexin V staining. CONCLUSIONS: Our results clearly indicate that IP6 induces autophagy by inhibiting the Akt/mTOR pathway.

5.
ACS Appl Bio Mater ; 1(6): 2094-2109, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996271

RESUMO

An amphiphilic polymer that consisted of a deep eutectic solvent (DES)-mediated drug carrier was designed, where the DES influenced the formation of folic acid (FA)-tagged g-ß-alanine-co-PCL polymer (DES@FA-g-ß-alanine-co-PCL); the nature of the carrier was investigated through emission analysis and pyrene used as a model probe (CMC = 0.4 mg/mL). The amphiphilic polymer was self-assembled into a sphere (≈204 nm diameter) with a surface charge of -3 ± 0.5 mV. The doxorubicin was incorporated and the structural changes were analyzed by UV-visible spectroscopy, FT-IR, XRD, Raman, and TGA analysis, while size and morphological analysis was performed by DLS, AFM, SEM, and TEM. The controlled release of drug from the carrier was observed at different pH levels. The enhanced anticancer potential of DOX-loaded polymeric micelle was studied both in vitro and in vivo breast cancer model. The treatment of DOX-loaded polymeric micelle reduces the viability and proliferation of MDA-MB-231 cells. From the results of the current investigation it concludes that the DOX-loaded polymeric micelle has enhance anticancer effect and it exhibits its potential effect at the dosage of 5 mg/kg body weight in mammary carcinoma-bearing rats. From the observed results, synthesized DOX-loaded polymeric micelle holds strong anticancer properties compared with free DOX and can be used as a potential carrier in the pharmaceutical industry.

6.
Int J Biol Macromol ; 106: 293-301, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28782611

RESUMO

Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1H NMR and 13C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials.


Assuntos
Apatitas/química , Artocarpus/química , Nanocompostos/química , Pectinas/química , Engenharia Tecidual , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Apatitas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pectinas/isolamento & purificação , Pectinas/farmacologia , Resíduos
7.
Lab Invest ; 97(10): 1167-1179, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28869589

RESUMO

Cardiovascular disease remains the leading cause of death and disability in advanced countries. Stem cell transplantation has emerged as a promising therapeutic strategy for acute and chronic ischemic cardiomyopathy. The current status of stem cell therapies for patients with myocardial infarction is discussed from a bioengineering and biomaterial perspective in this review. We describe (a) the current status of clinical trials of human pluripotent stem cells (hPSCs) compared with clinical trials of human adult or fetal stem cells, (b) the gap between fundamental research and application of human stem cells, (c) the use of biomaterials in clinical and pre-clinical studies of stem cells, and finally (d) trends in bioengineering to promote stem cell therapies for patients with myocardial infarction. We explain why the number of clinical trials using hPSCs is so limited compared with clinical trials using human adult and fetal stem cells such as bone marrow-derived stem cells.


Assuntos
Bioengenharia , Ensaios Clínicos como Assunto , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Materiais Biocompatíveis , Bioengenharia/métodos , Bioengenharia/tendências , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Pesquisa com Células-Tronco
8.
Sci Rep ; 7(1): 10962, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887536

RESUMO

Camptothecin (CPT) is an anti-cancer drug that effectively treats various cancers, including colon cancer. However, poor solubility and other drawbacks have restricted its chemotherapeutic potential. To overcome these restrictions, CPT was encapsulated in CEF (cyclodextrin-EDTA-FE3O4), a composite nanoparticle of magnetic iron oxide (Fe3O4), and ß-cyclodextrin was cross-linked with ethylenediaminetetraacetic acid (EDTA). This formulation improved CPT's solubility and bioavailability for cancer cells. The use of magnetically responsive anti-cancer formulation is highly advantageous in cancer chemotherapy. The chemical characterisation of CPT-CEF was studied here. The ability of this nano-compound to induce apoptosis in HT29 colon cancer cells and A549 lung cancer cells was evaluated. The dose-dependent cytotoxicity of CPT-CEF was shown using MTT. Propidium iodide and Annexin V staining, mitochondrial membrane depolarisation (JC-1 dye), and caspase-3 activity were assayed to detect apoptosis in CPT-CEF-treated cancer cells. Cell cycle analysis also showed G1 phase arrest, which indicated possible synergistic effects of the nano-carrier. These study results show that CPT-CEF causes a dose-dependent cell viability reduction in HT29 and A549 cells and induces apoptosis in colon cancer cells via caspase-3 activation. These data strongly suggest that CPT could be used as a major nanocarrier for CPT to effectively treat colon cancer.


Assuntos
Antineoplásicos Fitogênicos/química , Camptotecina/química , Nanoconjugados/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Neoplasias do Colo/metabolismo , Ácido Edético/química , Compostos Férricos/química , Fase G1/efeitos dos fármacos , Células HT29 , Humanos , beta-Ciclodextrinas/química
9.
Trends Biotechnol ; 35(11): 1102-1117, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28751147

RESUMO

Current clinical trials that evaluate human pluripotent stem cell (hPSC)-based therapies predominantly target treating macular degeneration of the eyes because the eye is an isolated tissue that is naturally weakly immunogenic. Here, we discuss current bioengineering approaches and biomaterial usage in combination with stem cell therapy for macular degeneration disease treatment. Retinal pigment epithelium (RPE) differentiated from hPSCs is typically used in most clinical trials for treating patients, whereas bone marrow mononuclear cells (BMNCs) or mesenchymal stem cells (MSCs) are intravitreally transplanted, undifferentiated, into patient eyes. We also discuss reported negative effects of stem cell therapy, such as patients becoming blind following transplantation of adipose-derived stem cells, which are increasingly used by 'stem-cell clinics'.


Assuntos
Cegueira , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Epitélio Pigmentado da Retina , Animais , Cegueira/metabolismo , Cegueira/patologia , Cegueira/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes/transplante , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
10.
Biomed Pharmacother ; 87: 461-470, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28068637

RESUMO

Natural rubber Latex (Lax) is a colloidal dispersion of polymer particles in liquid and shows good biodegradable, biocompatibility, and non-toxicity. Natural polymers are the most important materials used in food packaging, micro/nano-drug delivery, tissue engineering, agriculture, and coating. In the present study, natural compounds extracted from plant Lax were designed to function as drug carriers using various surfactants via emulation and solvent evaporation method. Calotropis gigantea belongs to the family Apocynaceae and has received considerable attention in modern medicine, ayurvedeic, siddha, and traditional medicine. Since, we were isolated biodegradable, non-toxic, and biocompatible materials as latex from Calotropis gigantea plant. The Lax was separated as per their solubility nature and it was designed as a carrier using surfactant namely; Sorbitanmonolaurate (Span-20), sodium lauryl sulfate (SLS), and cetyltrimethylammonium bromide (CTAB). The isolated compounds from Lax of Calotropis gigantea were analyzed using high-performance liquid chromatography. To confirm the encapsulation efficiency and in vitro drug release of the carriers, doxorubicin (DOX) was used as a model natural drug. The hybrid nanocarriers were successfully synthesized through simple solvent evaporation using three surfactants, and the morphology was characterized by SEM and TEM technique. The functionality and crystalline nature of the nanocarriers were confirmed using FTIR and XRD, respectively. Within 90min, the maximum amount of DOX was encapsulated in the carriers, and prolonged cumulative drug release by the nanocarriers was observed. The formulated natural carriers were found to have potentially effective cytotoxic effects on lung cancer cells.


Assuntos
Calotropis/química , Preparações de Ação Retardada/química , Doxorrubicina/química , Portadores de Fármacos/química , Látex/química , Nanopartículas/química , Células A549 , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Química Farmacêutica/métodos , Preparações de Ação Retardada/farmacologia , Doxorrubicina/farmacologia , Hexoses/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/química , Dodecilsulfato de Sódio/química , Solubilidade
11.
Int J Pharm ; 513(1-2): 628-635, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27693734

RESUMO

We have developed a nano drug delivery system for the treatment of tuberculosis (TB) using rifampicin (RF) encapsulated in poly(ester amide)s nanoparticles (PEA-RF-NPs), which are biocompatible polymers. In this study, biodegradable amino acid based poly(ester amide)s (PEAs) were synthesized by the poly condensation reaction and RF-loaded NPs were fabricated by the dialysis method. The surface morphology and in-vitro drug release efficiency were examined. The effect of time and temperature on the cellular uptake of PEA-RF-NPs in NR8383 cells was evaluated. Fluorescence microscopic results of PEA-RF-NPs from NR8383 cell lines suggest its potential application in treating TB. The antibacterial activity of RF against Mycobacterium smegmatis was also evaluated. Based on these results, this approach provides a new means for controlled and efficient release of RF using the PEA-NPs delivery system and is promising for the treatment of TB.


Assuntos
Amidas , Antibióticos Antituberculose , Portadores de Fármacos , Nanopartículas , Poliésteres , Rifampina , Amidas/administração & dosagem , Amidas/química , Animais , Antibióticos Antituberculose/administração & dosagem , Antibióticos Antituberculose/química , Linhagem Celular , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Microscopia Eletrônica de Varredura , Mycobacterium/efeitos dos fármacos , Mycobacterium/crescimento & desenvolvimento , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliésteres/administração & dosagem , Poliésteres/química , Ratos , Rifampina/administração & dosagem , Rifampina/química
12.
Int J Nanomedicine ; 11: 4439-4449, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660438

RESUMO

BACKGROUND: The present study focused on a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs) with multipurpose anticancer and antimicrobial activities. MATERIALS AND METHODS: We studied a green synthesis route to produce AgNPs by using an aqueous extract of Pimpinella anisum seeds (3 mM). Their antimicrobial activity and cytotoxicity on human neonatal skin stromal cells (hSSCs) and colon cancer cells (HT115) were assessed. RESULTS: A biophysical characterization of the synthesized AgNPs was realized: the morphology of AgNPs was determined by transmission electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, and ultraviolet-vis absorption spectroscopy. Transmission electron microscopy showed spherical shapes of AgNPs of P. anisum seed extracts with a 3.2 nm minimum diameter and average diameter ranging from 3.2 to 16 nm. X-ray powder diffraction highlighted the crystalline nature of the nanoparticles, ultraviolet-vis absorption spectroscopy was used to monitor their synthesis, and Fourier transform infrared spectroscopy showed the main reducing groups from the seed extract. Energy dispersive spectroscopy was used to confirm the presence of elemental silver. We evaluated the antimicrobial potential of green-synthesized AgNPs against five infectious bacteria: Staphylococcus pyogenes (29213), Acinetobacter baumannii (4436), Klebsiella pneumoniae (G455), Salmonella typhi, and Pseudomonas aeruginosa. In addition, we focused on the toxicological effects of AgNPs against hSSC cells and HT115 cells by using in vitro proliferation tests and cell viability assays. Among the different tested concentrations of nanoparticles, doses < 10 µg showed few adverse effects on cell proliferation without variations in viability, whereas doses >10 µg led to increased cytotoxicity. CONCLUSION: Overall, our results highlighted the capacity of P. anisum-synthesized AgNPs as novel and cheap bioreducing agents for eco-friendly nanosynthetical routes. The data confirm the multipurpose potential of plant-borne reducing and stabilizing agents in nanotechnology.

13.
Biomed Pharmacother ; 83: 201-211, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27470566

RESUMO

The present study evaluates the in-vitro cisplatin (CDDP) release from four different poly oxalates cross-linked chitosan (CS) nanocomposites. The poly oxalates were synthesized from the reaction of four different dicarboxylic acids with ethylene glycol (EG). The encapsulation of CDDP on CS cross-linked with Oxalic acid-EG, Succinic acid-EG, Citric acid-EG and tartaric acid-EG carriers were carried out by the ionic gelation technique. The poly-oxalate nanocarriers were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction studies and zeta potential analysis. The stability of poly-oxalates was calculated by the density functional theory (DFT) using Gaussview 05. Excellent drug release kinetics and good biocompatibility of nanocomposites were observed for the in-vitro analysis. The unloaded poly oxalate nanocomposites perform to have a low inherent cytotoxicity, whereas the loaded nanocomposites were as active as free CDDP in the MCF-7 cancer cell line. The tumor growth inhibitions of CDDP-loaded nanocomposites are more or equal to that of free CDDP. Taken together, these two poly oxalate nanocomposites are established as promising drug carriers for the delivery of CDDP.


Assuntos
Antineoplásicos/farmacologia , Ácidos Carboxílicos/química , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Morte Celular/efeitos dos fármacos , Cisplatino/farmacologia , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Eletricidade Estática , Difração de Raios X
14.
Parasitol Int ; 65(3): 276-84, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26873539

RESUMO

The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 µg/ml (CQ-s) and 55.5 µg/ml (CQ-r), while chloroquine IC(50) were 81.5 µg/ml (CQ-s) and 86.5 µg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.


Assuntos
Anopheles/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Malária/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Oligoquetos/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Anopheles/parasitologia , Carcinoma Hepatocelular/parasitologia , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Larva , Neoplasias Hepáticas/parasitologia , Malária/parasitologia , Nanopartículas Metálicas/química , Pupa , Prata/química , Prata/farmacologia , Prata/uso terapêutico
15.
Braz. arch. biol. technol ; 58(5): 781-788, graf
Artigo em Inglês | LILACS | ID: lil-764480

RESUMO

ABSTRACTPolyhydroxybutyrate (PHB) is a renowned biodegradable plastic that do not release any toxins or residues in the environment like petroleum based plastics. In the present study, 50 bacteria isolated from mangrove niche, Saudi Arabia, were screened for maximum PHB production. All the 50 strains showed positive for PHB production, of which one strain showed maximum of 137 mgL-1. The most PHB accumulated bacterium was selected and identified asBacillus thuringiensis KSADL127, based on phenotypic characterization and 16S rRNA sequence analysis. Characterization of extracted PHB was carried out by FT-IR, NMR, UV spectroscopy, DSC, TGA, and LC-MS, which later confirmed the presence of intracellular accumulated polymer and substantiated as PHB.

16.
Biomaterials ; 35(14): 4278-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24565521

RESUMO

The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 104 cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.


Assuntos
Tecido Adiposo/citologia , Ácido Láctico/farmacologia , Membranas Artificiais , Ácido Poliglicólico/farmacologia , Seda/farmacologia , Células-Tronco/citologia , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Separação Celular , Filtração , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Soluções , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA