Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 167(1): 177-182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705109

RESUMO

The potato/tomato psyllid Bactericera cockerelli (Hemiptera: Triozidae) is a pest of Solanaceae plants and a vector of the pathogenic bacterium 'Candidatus Liberibacter solanacearum', which is associated with zebra chip disease in potato. This disease is controlled through insecticide treatments, and more environmentally friendly management options are desirable. The objective of this study was to identify viruses present in potato psyllid populations that might be used as biocontrol agents for this insect pest. A new picorna-like virus, tentatively named "Bactericera cockerelli picorna-like virus" (BcPLV), was discovered in B. cockerelli populations maintained in greenhouses, through the use of high-throughput sequencing data and subsequent confirmation by RT-PCR and Sanger sequencing. BcPLV has a positive-sense 9,939-nt RNA genome encoding a single 2,947-aa polyprotein and is related to the Diaphorina citri picorna-like virus (DcPLV) found in Asian citrus psyllid Diaphorina citri populations. Based on their genome organization and the phylogeny of their RNA-dependent RNA polymerase domains, BcPLV and DcPLV together are proposed to comprise a new genus, provisionally named "Psylloidivirus", within the family Iflaviridae.


Assuntos
Hemípteros , Rhizobiaceae , Solanum lycopersicum , Solanum tuberosum , Vírus , Animais , Doenças das Plantas
2.
Environ Entomol ; 49(4): 974-982, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32533139

RESUMO

Understanding factors that affect the population dynamics of insect pest species is key for developing integrated pest management strategies in agroecosystems. Most insect pest populations are strongly regulated by abiotic factors such as temperature and precipitation, and assessing relationships between abiotic conditions and pest dynamics can aid decision-making. However, many pests are also managed with insecticides, which can confound relationships between abiotic factors and pest dynamics. Here we used data from a regional monitoring network in the Pacific Northwest United States to explore effects of abiotic factors on populations of an intensively managed potato pest, the potato psyllid (Bactericera cockerelli Sulc), which can vector Candidatus Liberibacter psyllaurus, a bacterial pathogen of potatoes. We assessed effects of temperature on psyllid populations, and show psyllid population growth followed predictable patterns within each year, but there was considerable variation across years in psyllid abundance. Examination of seasonal weather patterns suggested that in 2017, when psyllid populations were less abundant by several orders of magnitude than other years, a particularly long and cold period of winter weather may have harmed overwintering populations and limited population growth. The rate of degree-day accumulation over time, as well as total degree-day accumulation also affected trap catch abundance, likely by mediating the number of psyllid generations per season. Our findings indicate that growers can reliably infer the potential magnitude of risk from potato psyllids using monitoring data, date of first detection, seasonal weather patterns, and population size early in the growing season.


Assuntos
Hemípteros , Solanum tuberosum , Animais , Noroeste dos Estados Unidos , Doenças das Plantas , Dinâmica Populacional , Estações do Ano
3.
PLoS One ; 11(8): e0161016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525703

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited bacterium that severely affects important Solanaceae and Apiaceae crops, including potato, tomato, pepper, tobacco, carrot and celery. This bacterium is transmitted to solanaceous species by potato psyllid, Bactericera cockerelli, and to Apiaceae by carrot psyllids, including Trioza apicalis and Bactericera trigonica. Five haplotypes of Lso have so far been described, two are associated with solanaceous species and potato psyllids, whereas the other three are associated with carrot and celery crops and carrot psyllids. Little is known about cross-transmission of Lso to carrot by potato psyllids or to potato by carrot psyllids. Thus, the present study assessed whether potato psyllid can transmit Lso to carrot and whether Lso haplotypes infecting solanaceous species can also infect carrot and lead to disease symptom development. In addition, the stylet probing behavior of potato psyllid on carrot was assessed using electropenetrography (EPG) technology to further elucidate potential Lso transmission to Apiaceae by this potato insect pest. Results showed that, while potato psyllids survived on carrot for several weeks when confined on the plants under controlled laboratory and field conditions, the insects generally failed to infect carrot plants with Lso. Only three of the 200 carrot plants assayed became infected with Lso and developed characteristic disease symptoms. Lso infection in the symptomatic carrot plants was confirmed by polymerase chain reaction assay and Lso in the carrots was determined to be of the haplotype B, which is associated with solanaceous species. EPG results further revealed that potato psyllids readily feed on carrot xylem but rarely probe into the phloem tissue, explaining why little to no Lso infection occurred during the controlled laboratory and field cage transmission trials. Results of our laboratory and field transmission studies, combined with our EPG results, suggest that the risk of Lso infection and spread between psyllid-infested solanaceous and Apiaceae crops is likely to be negligible under normal field conditions.


Assuntos
Daucus carota/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Animais , Comportamento Animal , Laboratórios , Funções Verossimilhança , Solanum tuberosum/microbiologia
4.
Plant Biotechnol J ; 13(4): 551-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421386

RESUMO

Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.


Assuntos
Ácido Clorogênico/metabolismo , Inativação Gênica , Fenilpropionatos/metabolismo , Solanum tuberosum/metabolismo , Genes de Plantas , Filogenia , Plantas Geneticamente Modificadas , Solanum tuberosum/genética
5.
Environ Entomol ; 43(2): 344-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24517908

RESUMO

The potato psyllid (Bactericera cockerelli Sulc) is an economically important insect pest of solanaceous crops such as potato, tomato, pepper, and tobacco. Historically, the potato psyllid's range included central United States, Mexico, and California; more recently, populations of this insect have been reported in Central America, the Pacific Northwest, and New Zealand. Like most phytophagous insects, potato psyllids require symbiotic bacteria to compensate for nutritional deficiencies in their diet. Potato psyllids harbor the primary symbiont, Candidatus Carsonella ruddii, and may also harbor many secondary symbionts such as Wolbachia sp., Sodalis sp., Pseudomonas sp., and others. These secondary symbionts can have an effect on reproduction, nutrition, immune response, and resistances to heat or pesticides. To identify regional differences in potato psyllid bacterial symbionts, 454 pyrosequencing was performed using generic 16S rRNA gene primers. Analysis was performed using the Qiime 1.6.0 software suite, ARB Silva, and R. Operational taxonomic units were then grouped at 97% identity. Representative sequences were classified to genus using the ARB SILVA database. Potato psyllids collected in California contained a less diverse microbial community than those collected in the central United States and Central America. The crop variety, collection year, and haplotype did not seem to affect the microbial community in potato psyllids. The primary difference between psyllids in different regions was the presence and overall bacterial community composition of Candidatus Carsonella ruddii and Wolbachia.


Assuntos
Distribuição Animal/fisiologia , Biota , Hemípteros/microbiologia , Simbiose , Animais , Sequência de Bases , Haplótipos , Hemípteros/genética , Dados de Sequência Molecular , Nova Zelândia , Nicarágua , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA