Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Invest ; 61(1-2): 137-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705759

RESUMO

Adenylate kinase isozyme 2 (AK2) is located in mitochondrial intermembrane space and regulates energy metabolism by reversibly converting ATP and AMP to 2 ADPs. We previously demonstrated that disruption of the Drosophila melanogaster AK2 gene (Dak2) resulted in growth arrest during the larval stage and subsequent death. Two other groups found that human AK2 mutations cause reticular dysgenesis, a form of severe combined immunodeficiency (SCID) that is associated with severe hematopoietic defects and sensorineural deafness. However, the mechanisms underlying differential outcomes of AK2 deficiency in Drosophila and human systems remain unknown. In this study, effects of tissue-specific inactivation of the Dak2 gene on Drosophila development were analyzed using RNAi-mediated gene knockdown. In addition, to investigate the roles of AK2 in the regulation of gene expression during development, microarray analysis was performed using RNA from first and second instar larvae of Dak2-deficient mutant and wild-type D. melanogaster. Knockdown of Dak2 in all germ layers caused cessation of growth and subsequent death of flies. Microarray analysis revealed that Dak2 deficiency downregulates various genes, particularly those involved in the proteasomal function and in mitochondrial translation machinery. These data indicate that adenine nucleotide interconversion by Dak2 is crucial for developmental processes of Drosophila melanogaster.


Assuntos
Adenilato Quinase/deficiência , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Genes Controladores do Desenvolvimento/fisiologia , Larva/genética , Adenilato Quinase/genética , Animais , Regulação para Baixo/fisiologia , Técnicas de Inativação de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sobrevida
2.
Artigo em Inglês | MEDLINE | ID: mdl-19416704

RESUMO

Adenylate kinases are phylogenetically widespread, highly conserved, and involved in energy metabolism and energy transfer. Of these, adenylate kinase (AK) isozyme 2 is uniquely localized in the mitochondrial intermembrane space and its physiological role remains largely unknown. In this study, we selected Drosophila melanogaster to analyze its role in vivo. AK isozyme cDNAs were cloned and their gene expressions were characterized in D. melanogaster. The deduced amino acid sequences contain highly conserved motifs for P-loop, NMP binding, and LID domains of AKs. In addition, the effects of AK2 gene knockout on phenotype of AK2 mutants were examined using P-element technology. Although homozygous AK2 mutated embryos developed without any visible defects, their growth ceased and they died before reaching the third instar larval stage. Maternally provided AK2 mRNA was detected in fertilized eggs, and weak AK2 activity was observed in first and second instar larvae of the homozygous AK2 mutants, suggesting that maternally provided AK2 is sufficient for embryonic development. Disappearance of AK2 activity during larval stages resulted in growth arrest and eventual death. These results demonstrate that AK2 plays a critical role in adenine nucleotide metabolism in the mitochondrial intermembrane space and is essential for growth in D. melanogaster.


Assuntos
Adenilato Quinase/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Nucleotídeos de Adenina/metabolismo , Adenilato Quinase/classificação , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Clonagem Molecular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Ensaios Enzimáticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Cinética , Masculino , Dados de Sequência Molecular , Mutação , Filogenia , Homologia de Sequência de Aminoácidos
3.
Zoolog Sci ; 24(1): 21-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17409713

RESUMO

In this study, we present a propeptide-like cysteine proteinase inhibitor, Drosophila CTLA-2-like protein (D/CTLA-2), a CG10460 (crammer) gene product, with an amino acid sequence significantly similar to the proregion of Drosophila cysteine proteinase 1 (CP1). Recombinant D/CTLA-2, expressed in E. coli, strongly inhibited Bombyx cysteine proteinase (BCP) with a Ki value of 4.7 nM. It also inhibited cathepsins L and H with Ki values of 3.9 (human liver) and 0.43 (rabbit liver) nM, and 7.8 nM (human liver), respectively. Recombinant D/CTLA-2 exhibited low but significant inhibitory activities to cathepsin B with Ki values of 15 nM (human liver) and 110 nM (rat liver), but hardly inhibited papain. We attempted to purify cysteine proteinases inhibited by D/CTLA-2 from total bodies of adult Drosophila. Recombinant D/CTLA-2 significantly inhibited CP1 with a Ki value of 12 nM, indicating that CP1, a cognate enzyme of D/CTLA-2, is a target enzyme of the inhibitor in Drosophila cells. These results indicate that D/CTLA-2 is a selective inhibitor of cathepsin L-like cysteine proteinases similar to other propeptide-like cysteine proteinase inhibitors such as Bombyx cysteine proteinase inhibitors (BCPI) and cytotoxic T-lymphocyte antigen-2 (CTLA-2). D/CTLA-2 was expressed over the whole life cycle of Drosophila. Strong expression was observed in the garland cells and prothoracic gland in the late stages of embryonic development. These results suggest that D/CTLA-2, implicated in intra- and extra-cellular digestive processes, functions in these tissues by suppressing uncontrolled enzymatic activities of CP1.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação , Sequência de Bases , Western Blotting , Catepsinas/antagonistas & inibidores , Cisteína Endopeptidases , Primers do DNA , Drosophila/metabolismo , Escherichia coli , Humanos , Hibridização In Situ , Fígado/metabolismo , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Linfócitos T Citotóxicos
4.
Dev Genes Evol ; 212(11): 534-41, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12459922

RESUMO

The Drosophila large intestine is initially subdivided into dorsal and ventral domains with distinct cell types, and a one-cell-wide strand of boundary cells is induced between them. Here we show that cell identity and localization of the boundary cells are determined by the combined action of Delta, Notch, and engrailed genes. The prospective dorsal domain of the hindgut primordium expresses engrailed. Engrailed represses Delta, which is ubiquitously expressed throughout the prospective hindgut region in early blastodermal stages, in the dorsal domain, and thus generates a Delta-positive/negative prepattern. Expression of Engrailed protein determines the dorsal domain, while an Engrailed-negative (Delta-positive) region is differentiated into the ventral domain. Delta-positive ventral cells activate a Notch cascade in abutting dorsal cells, and thus induce their differentiation into boundary cells. Mis-expression of a constitutively active Notch intracellular domain causes the entire large intestine to develop as boundary cells. It was also found that the transducing activity of a transmembrane form of activated Notch, which requires further proteolytic processing to generate intracellular fragments, is suppressed in the Delta-positive domain. Delta acts in two distinct ways: it activates the Notch signaling pathway in adjacent Delta-negative cells, and, at the same time, autonomously blocks Notch signaling in Delta-positive cells by affecting Notch processing.


Assuntos
Sistema Digestório/citologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/anatomia & histologia , Proteínas de Homeodomínio/fisiologia , Proteínas de Membrana/fisiologia , Fatores de Transcrição , Animais , DNA Complementar/genética , Fenômenos Fisiológicos do Sistema Digestório , Proteínas de Drosophila/genética , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteínas de Membrana/genética , Receptores Notch , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA