Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer ; 31(2): 305-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265632

RESUMO

BACKGROUND: γ1-Adaptin is a subunit of adaptor protein complex-1 (AP-1), which regulates intracellular transport between the trans-Golgi network (TGN) and endosomes. Since expression levels of AP-1 subunits have been reported to be associated with cell proliferation and cancer malignancy, we investigated the relationships between the immunohistochemical expression of γ1-adaptin and both clinicopathological factors and relapse-free survival (RFS) in breast cancer tissue. MATERIALS AND METHODS: SK-BR-3 cell line depleted of γ1-adaptin was used for cell proliferation, migration, and invasion assay. Intracellular localization of γ1-adaptin was examined with immunohistochemistry (IHC) using an antibody against γ1-adaptin, and with double immunohistofluorescence (IHF) microscopy using markers for the TGN and endosome. γ1-Adaptin intensities in IHC samples from 199 primary breast cancer patients were quantified and assessed in relation to clinicopathological factors and RFS. RESULTS: Cell growth, migration, and invasion of SK-BR-3 cells were significantly suppressed by the depletion of γ1-adaptin. Although the staining patterns in the cancer tissues varied among cases by IHC, double IHF demonstrated that γ1-adaptin was mainly localized in EEA1-positive endosomes, but not in the TGN. γ1-Adaptin intensity was significantly higher in the tumor regions than in non-tumor regions. It was also higher in patients with Ki-67 (high), ER (-), PgR (-), and HER2 (+). Among subtypes of breast cancer, γ1-adaptin intensity was higher in HER2 than in luminal A or luminal B. The results of the survival analysis indicated that high γ1-adaptin intensity was significantly associated with worse RFS, and this association was also observed in group with ER (+), PgR (+), HER2 (-), Ki-67 (high), or luminal B. In addition, the Cox proportional hazards model showed that high γ1-adaptin intensity was an independent prognostic factor. CONCLUSION: These results suggest that the endosomal expression of γ1-adaptin is positively correlated with breast cancer malignancy and could be a novel prognostic marker.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Endossomos/metabolismo , Antígeno Ki-67/metabolismo , Recidiva Local de Neoplasia/metabolismo , Fator de Transcrição AP-1/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
2.
Breast Cancer Res ; 25(1): 41, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059993

RESUMO

BACKGROUND: Cell adhesion is indispensable for appropriate tissue architecture and function in multicellular organisms. Besides maintaining tissue integrity, cell adhesion molecules, including tight-junction proteins claudins (CLDNs), exhibit the signaling abilities to control a variety of physiological and pathological processes. However, it is still fragmentary how cell adhesion signaling accesses the nucleus and regulates gene expression. METHODS: By generating a number of knockout and rescued human breast cell lines and comparing their phenotypes, we determined whether and how CLDN4 affected breast cancer progression in vitro and in vivo. We also identified by RNA sequencing downstream genes whose expression was altered by CLDN4-adhesion signaling. Additionally, we analyzed by RT-qPCR the CLDN4-regulating genes by using a series of knockout and add-back cell lines. Moreover, by immunohistochemistry and semi-quantification, we verified the clinicopathological significance of CLDN4 and the nuclear receptor LXRß (liver X receptor ß) expression in breast cancer tissues from 187 patients. RESULTS: We uncovered that the CLDN4-adhesion signaling accelerated breast cancer metabolism and progression via LXRß. The second extracellular domain and the carboxy-terminal Y197 of CLDN4 were required to activate Src-family kinases (SFKs) and the downstream AKT in breast cancer cells to promote their proliferation. Knockout and rescue experiments revealed that the CLDN4 signaling targets the AKT phosphorylation site S432 in LXRß, leading to enhanced cell proliferation, migration, and tumor growth, as well as cholesterol homeostasis and fatty acid metabolism, in breast cancer cells. In addition, RT-qPCR analysis showed the CLDN4-regulated genes are classified into at least six groups according to distinct LXRß- and LXRßS432-dependence. Furthermore, among triple-negative breast cancer subjects, the "CLDN4-high/LXRß-high" and "CLDN4-low and/or LXRß-low" groups appeared to exhibit poor outcomes and relatively favorable prognoses, respectively. CONCLUSIONS: The identification of this machinery highlights a link between cell adhesion and transcription factor signalings to promote metabolic and progressive processes of malignant tumors and possibly to coordinate diverse physiological and pathological events.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Claudina-4/genética , Claudina-4/metabolismo , Receptores X do Fígado/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Claudinas/genética , Claudinas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA