Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
2.
Mol Ther Methods Clin Dev ; 30: 502-514, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37693948

RESUMO

Gene therapy using adeno-associated virus (AAV)-based vectors has become a realistic therapeutic option for hemophilia. We examined the potential of a novel engineered liver-tropic AAV3B-based vector, AAV.GT5, for hemophilia B gene therapy. In vitro transduction with AAV.GT5 in human hepatocytes was more than 100 times higher than with AAV-Spark100, another bioengineered vector used in a clinical trial. However, liver transduction following intravenous injection of these vectors was similar in mice with a humanized liver and in macaques. This discrepancy was due to the low recovery and short half-life of AAV.GT5 in blood, depending on the positive charge of the heparin-binding site in the capsid. Bypassing systemic clearance with the intra-hepatic vascular administration of AAV.GT5, but not AAV-Spark100, enhanced liver transduction in pigs and macaques. AAV.GT5 did not develop neutralizing antibodies (NAbs) in two of four animals, while AAV-Spark100 induced serotype-specific NAbs in all macaques tested (4 of 4). The NAbs produced after AAV-Spark100 administration were relatively serotype specific, and challenge with AAV.GT5 through the hepatic artery successfully boosted liver transduction in one animal previously administered AAV-Spark100. In summary, AAV.GT5 showed different vector kinetics and NAb induction compared with AAV-Spark100, and intra-hepatic vascular administration may minimize the vector dose required and vector dissemination.

3.
Hum Gene Ther ; 34(19-20): 1064-1071, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642269

RESUMO

The inner ear is a primary lesion in sensorineural hearing loss and has been a target in gene therapy. The efficacy of gene therapy depends on achieving sufficient levels of transduction at a safe vector dose. Vectors derived from various adeno-associated viruses (AAVs) are predominantly used to deliver therapeutic genes to inner ear cells. AAV9 and its variants vector are attractive candidates for clinical applications since they can cross the mesothelial cell layer and transduce inner hair cells (IHCs), although this requires relatively high doses. In this study, we investigated the effects of sucrose on the transduction of a variant of the AAV9 vector for gene transfer in the inner ear. We found that high concentrations of sucrose increased gene transduction in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. In addition, we demonstrated that simultaneous administration of sucrose enhanced the transduction of mouse IHCs and spiral ligament cells using an AAV9 variant vector. The procedure did not increase the thresholds in the auditory brainstem response, suggesting that sucrose had no adverse effect on auditory function. This versatile method may be valuable in the development of novel gene therapies for adult-onset sensorineural hearing loss.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Animais , Camundongos , Cóclea/patologia , Orelha Interna/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Perda Auditiva Neurossensorial/patologia , Células Ciliadas Auditivas Internas , Terapia Genética/métodos
4.
Neurochem Int ; 164: 105491, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709046

RESUMO

Drug abuse is one of the great social problems in the world and a major healthcare challenge. It is supposed that sensitivity and reactivity to abuse drugs may vary from person to person, while its molecular basis is largely unknown. Dopaminergic neurons are deeply involved in addiction, and tyrosine hydroxylase (TH) catalyzes the first and rate-limiting step of the biosynthesis of dopamine (DA). We investigated the effects of increased TH expression on the metabolism of DA and reactivity to methamphetamine (METH), a drug of abuse, in mice. Wild-type TH (WT-TH) or the S40E mutant of TH (S40E-TH), which is an active form of TH mimicking phosphorylated TH at the 40th serine, was expressed in midbrain dopaminergic neurons using an adeno-associated virus (AAV) vector. The biochemical analysis showed that the turnover rates of DA in the nerve terminals were increased by the expression of WT-TH and S40E-TH, while there were few changes in the DA contents. Next, we administered METH to TH-overexpressing mice. We found that the S40E-TH-expressing mice responded to lower doses of METH than the control mice and WT-TH mice. The stereotyped behaviors appeared first in S40E-TH mice and then in WT-TH and control mice in this order. These data showed that the TH activity and expression level differentially affect DA metabolism in the nerve terminals from that in the cell bodies and that the TH activity and expression level are one of the determining factors for sensitivity and reactivity to METH. We suggest that TH may be a drug target for ameliorating sensitivity to drugs of abuse.


Assuntos
Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Neurônios Dopaminérgicos , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Mesencéfalo
5.
Pediatr Neonatol ; 64 Suppl 1: S3-S9, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266189

RESUMO

Gene therapy using adeno-associated virus (AAV) is a rapidly developing technology with widespread treatment potential. AAV2 vectors injected directly into the brain by stereotaxic brain surgery have shown good results in treating aromatic l-amino acid decarboxylase deficiency. Moreover, gene therapy using the AAV9 vector, which crosses the blood-brain barrier, has been performed in more than 2000 patients worldwide as a disease-modifying therapy for spinal muscular atrophy. AAV vectors have been applied to the development of gene therapies for various pediatric diseases. Gene therapy trials for hemophilia and ornithine transcarbamylase deficiency are underway. Clinical trials are planned for glucose transporter I deficiency, Niemann-Pick disease type C, and spinocerebellar ataxia type 1. The genome of AAV vectors is located in the episome and is rarely integrated into chromosomes, making the vectors safe. However, serious adverse events such as hepatic failure and thrombotic microangiopathy have been reported, and ongoing studies are focusing on developing more efficient vectors to reduce required dosages.


Assuntos
Dependovirus , Vetores Genéticos , Criança , Humanos , Dependovirus/genética , Terapia Genética/métodos , Encéfalo
6.
J Gene Med ; 25(1): e3457, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278965

RESUMO

BACKGROUND: The delivery of adeno-associated virus (AAV) vectors via the cerebrospinal fluid (CSF) has emerged as a valuable method for widespread transduction in the central nervous system. Although infusion into the cerebral ventricles is a common protocol in preclinical studies of small animals, the cisterna magna has been recognized as an alternative target for clinical studies because it can be reached in a less invasive manner using an intrathecal catheter via the subarachnoid space from a lumbar puncture. METHODS: We evaluated the early distribution of fluorine-18-labeled AAV9 vectors infused into the lateral ventricle or cisterna magna of four non-human primates using positron emission tomography. The expression of the green fluorescent protein was immunohistochemically determined. RESULTS: In both approaches, the labeled vectors diffused into the broad arachnoid space around the brain stem and cervical spinal cord within 30 min. Both infusion routes efficiently transduced neurons in the cervical spinal cord. CONCLUSIONS: For gene therapy that primarily targets the cervical spinal cord and brainstem, such as amyotrophic lateral sclerosis, cisterna magna infusion would be a feasible and effective administration method.


Assuntos
Terapia Genética , Medula Espinal , Animais , Transdução Genética , Medula Espinal/metabolismo , Terapia Genética/métodos , Primatas/genética , Vetores Genéticos/genética , Dependovirus/genética
7.
Sci Rep ; 12(1): 16030, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163369

RESUMO

Genetic mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). Although mitochondrial dysfunction and stress granule have been crucially implicated in FUS proteinopathy, the molecular basis remains unclear. Here, we show that DHX30, a component of mitochondrial RNA granules required for mitochondrial ribosome assembly, interacts with FUS, and plays a crucial role in ALS-FUS. WT FUS did not affect mitochondrial localization of DHX30, but the mutant FUS lowered the signal of mitochondrial DHX30 and promoted the colocalization of cytosolic FUS aggregates and stress granule markers. The immunohistochemistry of the spinal cord from an ALS-FUS patient also confirmed the colocalization, and the immunoelectron microscope demonstrated decreased mitochondrial DHX30 signal in the spinal motor neurons. Subcellular fractionation by the detergent-solubility and density-gradient ultracentrifugation revealed that mutant FUS also promoted cytosolic mislocalization of DHX30 and aggregate formation. Interestingly, the mutant FUS disrupted the DHX30 conformation with aberrant disulfide formation, leading to impaired mitochondrial translation. Moreover, blue-native gel electrophoresis revealed an OXPHOS assembly defect caused by the FUS mutant, which was similar to that caused by DHX30 knockdown. Collectively, our study proposes DHX30 as a pivotal molecule in which disulfide-mediated conformational change mediates mitochondrial dysfunction and cytosolic aggregate formation in ALS-FUS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Detergentes , Dissulfetos , Humanos , Mitocôndrias/genética , Mutação , RNA , RNA Helicases/genética , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética
8.
Neurochem Res ; 47(9): 2856-2864, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906352

RESUMO

Methamphetamine (METH), the most widely distributed psychostimulant, aberrantly activates the reward system in the brain to induce addictive behaviors. The presynaptic protein "Piccolo", encoded by Pclo, was identified as a METH-responsive protein with enhanced expression in the nucleus accumbens (NAc) in mice. Although the physiological and pathological significance of Piccolo has been identified in dopaminergic signaling, its role in METH-induced behavioral abnormalities and the underlying mechanisms remain unclear. To clarify such functions, mice with Piccolo knockdown in the NAc (NAc-miPiccolo mice) by local injection of an adeno-associated virus vector carrying miRNA targeting Pclo were generated and investigated. NAc-miPiccolo mice exhibited suppressed hyperlocomotion, sensitization, and conditioned place preference behavior induced by systemic administration of METH. The excessive release of dopamine in the NAc was reduced in NAc-miPiccolo mice at baseline and in response to METH. These results suggest that Piccolo in the NAc is involved in METH-induced behavioral alterations and is a candidate therapeutic target for the treatment of drug addiction.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Metanfetamina/farmacologia , Camundongos , Núcleo Accumbens/metabolismo , Recompensa
9.
Curr Gene Ther ; 22(3): 185-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34551695

RESUMO

Pre existing immunity to adeno-associated virus (AAV) poses a concern in AAV vector- mediated gene therapy. Localized administration of low doses of carefully chosen AAV serotypes can mitigate the risk of an immune response. This article will illustrate the low risk of immune response to AAV serotype 2 vector-mediated gene therapy to the brain with support from clinical trial data in aromatic L-amino acid decarboxylase deficiency and Parkinson disease.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Sorogrupo
10.
Mol Ther ; 30(2): 509-518, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763085

RESUMO

Aromatic L-amino acid decarboxylase deficiency results in decreased neurotransmitter levels and severe motor dysfunction. Twenty-six patients without head control received bilateral intraputaminal infusions of a recombinant adeno-associated virus type 2 vector containing the human aromatic L-amino acid decarboxylase gene (eladocagene exuparvovec) and have completed 1-year evaluations. Rapid improvements in motor and cognitive function occurred within 12 months after gene therapy and were sustained during follow-up for >5 years. An increase in dopamine production was demonstrated by positron emission tomography and neurotransmitter analysis. Patient symptoms (mood, sweating, temperature, and oculogyric crises), patient growth, and patient caretaker quality of life improved. Although improvements were observed in all treated participants, younger age was associated with greater improvement. There were no treatment-associated brain injuries, and most adverse events were related to underlying disease. Post-surgery complications such as cerebrospinal fluid leakage were managed with standard of care. Most patients experienced mild to moderate dyskinesia that resolved in a few months. These observations suggest that eladocagene exuparvovec treatment for aromatic L-amino acid decarboxylase deficiency provides durable and meaningful benefits with a favorable safety profile.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Qualidade de Vida , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Descarboxilases de Aminoácido-L-Aromático/líquido cefalorraquidiano , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Dopamina , Terapia Genética/efeitos adversos , Humanos
11.
J Gene Med ; 24(3): e3402, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897885

RESUMO

BACKGROUND: Despite the increasing availability of effective drugs, around one-third of patients with epilepsy are still resistant to pharmacotherapy. Gene therapy has been suggested as a plausible approach to achieve seizure control, in particular for patients with focal epilepsy. Because seizures develop across wide spans of the brain in many forms of epilepsy, global delivery of the vectors is necessary to tackle such generalized seizures. Neuroligin 2 (NL2) is a postsynaptic cell adhesion molecule that induces or strengthens inhibitory synaptic function by specifically combining with neurexin 1. METHODS: In the present study, we applied an adeno-associated virus (AAV) type 9 vector expressing NL2 to modulate neuronal excitability in broad areas of the brain in epileptic (EL) mice, a model of polygene epilepsy. We administered the AAV vector expressing Flag-tagged NL2 under the synapsin I promoter (AAV-NL2) via cardiac injection 6 weeks after birth. RESULTS: Significant reductions in the duration, strength and frequency of seizure were observed during a 14-week observation period in NL2-treated EL mice compared to untreated or AAV-green fluorescent protein-treated EL mice. No behavioral abnormality was observed in NL2-treated EL mice in an open-field test. Immunohistochemical examination at 14 weeks after AAV-NL2 injection revealed the expression of exogenous NL2 in broad areas of the brain, including the hippocampus and, in these areas, NL2 co-localized with postsynaptic inhibitory molecule gephyrin. CONCLUSIONS: Global brain delivery of NL2 by systemic administration of AAV vector may provide a non-invasive therapeutic approach for generalized epilepsy.


Assuntos
Epilepsia , Sinapses , Animais , Encéfalo , Moléculas de Adesão Celular Neuronais , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Humanos , Camundongos , Proteínas do Tecido Nervoso , Convulsões/genética , Convulsões/metabolismo , Convulsões/terapia , Sinapses/metabolismo
12.
Brain Commun ; 4(6): fcac304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36751498

RESUMO

Static encephalopathy of childhood with neurodegeneration in adulthood/ß-propeller protein-associated neurodegeneration is a neurodegenerative disorder with brain iron accumulation caused by the variants of WDR45, a core autophagy-related gene that encodes WD repeat domain phosphoinositide interacting protein 4. However, the pathophysiology of the disease, particularly the function of WDR45/WD repeat domain phosphoinositide interacting protein 4 in iron metabolism, is largely unknown. As no other variants of core autophagy-related genes show abnormalities in iron metabolism, the relation between autophagy and iron metabolism remains to be elucidated. Since iron deposition in the brain is the hallmark of static encephalopathy of childhood with neurodegeneration in adulthood/ß-propeller protein-associated neurodegeneration, iron chelation therapy has been attempted, but it was found to worsen the symptoms; thus, the establishment of a curative treatment is essential. Here, we evaluated autophagy and iron metabolism in patient-derived cells. The expression of ferritin and ferric iron increased and that of ferrous iron decreased in the patient cells with WDR45 variants. In addition, the expression of nuclear receptor coactivator 4 was markedly reduced in patient-derived cells. Furthermore, divalent metal transporter 1, which takes in ferrous iron, was upregulated, while ferroportin, which exports ferrous iron, was downregulated in patient-derived cells. The transfer of WDR45 via an adeno-associated virus vector restored WD repeat domain phosphoinositide interacting protein 4 and nuclear receptor coactivator 4 expression, reduced ferritin levels, and improved other phenotypes observed in patient-derived cells. As nuclear receptor coactivator 4 mediates the ferritin-specific autophagy, i.e. ferritinophagy, its deficiency impaired ferritinophagy, leading to the accumulation of ferric iron-containing ferritin and insufficiency of ferrous iron. Because ferrous iron is required for various essential biochemical reactions, the changes in divalent metal transporter 1 and ferroportin levels may indicate a compensatory response for maintaining the intracellular levels of ferrous iron. Our study revealed that the pathophysiology of static encephalopathy of childhood with neurodegeneration in adulthood/ß-propeller protein-associated neurodegeneration involves ferrous iron insufficiency via impaired ferritinophagy through nuclear receptor coactivator 4 expression reduction. Our findings could aid in developing a treatment strategy involving WDR45 manipulation, which may have clinical applications.

13.
EMBO Mol Med ; 13(9): e14712, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34423905

RESUMO

This commentary provides an overview of the putamen as an established target site for gene therapy in treating aromatic l-amino acid decarboxylase (AADC) deficiency and Parkinson's disease, two debilitating neurological disorders that involve motor dysfunction caused by dopamine deficiencies. The neuroanatomy and the function of the putamen in motor control provide good rationales for targeting this brain structure. Additionally, the efficacy and safety of intraputaminal gene therapy demonstrate that restoration of dopamine synthesis in the putamen by using low doses of adeno-associated viral vector serotype 2 to deliver the hAADC gene is well tolerated. This restoration leads to sustained improvements in motor and nonmotor symptoms of AADC deficiency and improved uptake and conversion of exogenous l-DOPA into dopamine in Parkinson's patients.


Assuntos
Carboxiliases , Doença de Parkinson , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Terapia Genética , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Putamen/metabolismo
14.
Sci Rep ; 11(1): 9322, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927271

RESUMO

The natural serotypes of adeno-associated virus (AAV) or their variants, such as AAV8 and AAV5, are commonly used as vectors in the clinical programs for liver-targeted gene therapy. While AAV8 vectors are not highly efficient at targeting primary human hepatocytes, AAV3 vectors have recently demonstrated remarkable efficiency at targeting both human and non-human primate hepatocytes. However, the presence of high levels of neutralizing antibodies (NAbs) impedes transduction into hepatocytes, representing a major obstacle to the clinical application of AAV3 vectors. Herein, we engineered the viral capsid to reduce its reactivity with pre-existing NAbs, thereby enhancing the transduction efficiency. By introducing three substitutions (S472A, S587A, and N706A) on the surface loop of AAV3B capsid protein, we generated a triple mutant AAV3 (AAV.GT5) vector with less reactivity to anti-AAV capsid NAbs. While the transduction efficiency of AAV.GT5 into human hepatocellular cell lines was similar to those of parental AAV3B, it was 50-fold higher for hepatocytes derived from humanized mice compared to AAV8 vectors. Moreover, the AAV.GT5 vector yield was similar to those of the AAV2 and AAV3B vectors. Thus, high resistance to pre-existing NAbs makes AAV.GT5 a promising candidate for future liver-targeted gene therapy clinical trials.


Assuntos
Anticorpos Neutralizantes/imunologia , Capsídeo/imunologia , Dependovirus/imunologia , Vetores Genéticos/imunologia , Transdução Genética , Substituição de Aminoácidos , Animais , Bioengenharia , Células Hep G2 , Humanos , Camundongos
15.
Gene Ther ; 28(6): 329-338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33077933

RESUMO

Glucose transporter 1 deficiency syndrome (GLUT1DS) is caused by haplo-insufficiency of SLC2A1, which encodes GLUT1, resulting in impaired hexose transport into the brain. Previously, we generated a tyrosine-mutant AAV9/3 vector in which SLC2A1 was expressed under the control of the endogenous GLUT1 promoter (AAV-GLUT1), and confirmed the improved motor function and cerebrospinal fluid glucose levels of Glut1-deficient mice after cerebroventricular injection of AAV-GLUT1. In preparation for clinical application, we examined the expression of transgenes after intra-cisterna magna injection of AAV-GFP (tyrosine-mutant AAV9/3-GFP with the CMV promoter) and AAV-GLUT1. We injected AAV-GFP or AAV-GLUT1 (1.63 × 1012 vector genomes/kg) into the cisterna magna of pigs to compare differential promoter activity. After AAV-GFP injection, exogenous GFP was expressed in broad areas of the brain and peripheral organs. After AAV-GLUT1 injection, exogenous GLUT1 was expressed predominantly in the brain. At the cellular level, exogenous GLUT1 was mainly expressed in the endothelium, followed by glia and neurons, which was contrasted with the neuronal-predominant expression of GFP by the CMV promotor. We consider intra-cisterna magna injection of AAV-GLUT1 to be a feasible approach for gene therapy of GLUT1DS.


Assuntos
Cisterna Magna , Dependovirus , Animais , Dependovirus/genética , Vetores Genéticos/genética , Transportador de Glucose Tipo 1/genética , Camundongos , Suínos , Transgenes
16.
Hum Gene Ther ; 32(11-12): 589-598, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33256498

RESUMO

Niemann-Pick disease type C1 (NPC1) is a fatal congenital neurodegenerative disorder caused by mutations in the NPC1 gene, which is involved in cholesterol transport in lysosomes. Broad clinical manifestations of NPC1 include liver failure, pulmonary disorder, neurological deficits, and psychiatric symptoms. The main cause of death in NPC1 patients involves central nervous system (CNS) dysfunction; there is no essential treatment. We generated a tyrosine-mutant adeno-associated virus (AAV) 9/3 vector that expresses human NPC1 under a cytomegalovirus (CMV) promoter (AAV-CMV-hNPC1) and injected it into the left lateral ventricle (5 µL) and cisterna magna (10 µL) of Npc1 homo-knockout (Npc1-/-) mice. Each mouse received total 1.35 × 1011 vector genome on days 4 or 5 of life. AAV-treated Npc1-/- mice (n = 11) had an average survival of >28 weeks, while all saline-treated Npc1-/- mice (n = 11) and untreated Npc1-/- mice (n = 6) died within 16 weeks. Saline-treated and untreated Npc1-/- mice lost body weight from 7 weeks until death. However, the average body weight of AAV-treated Npc1-/- mice increased until 15 weeks. AAV-treated Npc1-/- mice also showed a significant improvement in the rotarod test performance. A pathological analysis at 11 weeks showed that cerebellar Purkinje cells were preserved in AAV-treated Npc1-/- mice. In contrast, untreated Npc1-/- mice showed an almost total loss of cerebellar Purkinje cells. Combined injection into both the lateral ventricle and cisterna magna achieved broader delivery of the vector to the CNS, leading to better outcomes than noted in previous reports, with injection into the lateral ventricles or veins alone. In AAV-treated Npc1-/- mice, vector genome DNA was detected widely in the CNS and liver. Human NPC1 RNA was detected in the brain, liver, lung, and heart. Accumulated unesterified cholesterol in the liver was reduced in the AAV-treated Npc1-/- mice. Our results suggest the feasibility of gene therapy for patients with NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Animais , Colesterol , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Células de Purkinje
17.
Nat Commun ; 11(1): 336, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953402

RESUMO

Targeting cytoplasmic protein-protein interactions with antibodies remains technically challenging, since antibodies expressed in the cytosol frequently form insoluble aggregates. Existing engineering methods are based on the notion that the estimated net charge at pH 7.4 affects stability; as such, they are unable to overcome this problem. Herein, we report a versatile method for engineering an ultra-stable cytoplasmic antibody (STAND), with a strong estimated net negative charge at pH 6.6, by fusing peptide tags with a highly negative charge and a low isoelectric point. Without the need for complicated amino acid substitutions, we convert aggregation-prone antibodies to STANDs that are useful for inhibiting in vivo transmitter release, modulating animal behaviour, and inhibiting in vivo cancer proliferation driven by mutated Kras-long recognised as an "undruggable" oncogenic protein. The STAND method shows promise for targeting endogenous cytoplasmic proteins in basic biology and for developing future disease treatments.


Assuntos
Anticorpos/metabolismo , Citoplasma/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos/genética , Comportamento Animal , Células COS , Proliferação de Células , Chlorocebus aethiops , Citoplasma/genética , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Addict Biol ; 25(3): e12749, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30950164

RESUMO

Shati/Nat8l is a novel N-acetyltransferase identified in the brain of mice treated with methamphetamine (METH). Shati/Nat8l mRNA is expressed in various brain areas, including the prefrontal cortex (PFC), where the expression level is higher than that in other brain regions. Shati/Nat8l overexpression in the nucleus accumbens (NAc) attenuates the pharmacological response to METH via mGluR3. Meanwhile, dopamine (DA) and glutamate dysregulations have been reported in the medial prefrontal cortex (mPFC) and NAc after METH self-administration and during reinstatement. However, the mechanism, the reward system, and function of Shati/Nat8l in the mPFC is unclear. Here, we injected an adeno-associated virus (AAV) vector containing Shati/Nat8l into the mPFC of mice, to overexpress Shati/Nat8l in the mPFC (mPFC-Shati/Nat8l). Interestingly, the METH-induced conditioned place preference (CPP) was attenuated in the mPFC-Shati/Nat8l mice, but locomotor activity was not. Additionally, immunohistochemical results from mice that were injected with AAV-GFP showed fluorescence in the mPFC and other brain regions, mainly the NAc, indicating an mPFC-NAc top-down connection. Finally, in vivo microdialysis experiments revealed that Shati/Nat8l overexpression in the mPFC reduced extracellular DA levels and suppressed the METH-induced DA increase in the NAc. Moreover, decreased extracellular glutamate levels were observed in the NAc. These results indicate that Shati/Nat8l overexpression in the mPFC attenuates METH-induced CPP by decreasing extracellular DA in the NAc. In contrast, Shati/Nat8l-mPFC overexpression did not alter METH-induced hyperlocomotion. This study demonstrates that Shati/Nat8l in the mPFC attenuates METH reward-seeking behaviour but not the psychomotor activity of METH.


Assuntos
Acetiltransferases/genética , Condicionamento Clássico , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Locomoção/genética , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Técnicas de Introdução de Genes , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/farmacologia , Camundongos , Microdiálise
19.
Neuropsychopharmacol Rep ; 39(3): 209-216, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283871

RESUMO

AIM: We previously reported that methamphetamine (METH)-induced conditioned place preference was attenuated by Shati/Nat8l overexpression in the medial prefrontal cortex (mPFC). Shati/Nat8l overexpression in the mPFC expressed lower levels of both glutamate and dopamine (DA) in the nucleus accumbens (NAc) and attenuated METH-induced DA elevation. We suggested a mechanism in which a decline of glutamate levels in the NAc decreases extracellular DA levels. However, the hypothesis has not confirmed. METHODS: We conducted a recovery experiments by pre-microinjection of an mGluR group II antagonist, LY341495, into the NAc shell of mPFC-Shati/Nat8l-overexpressed mice followed by METH injection and DA levels measurement by in vivo microdialysis. RESULTS: Pretreatment with LY341495 was able to restore METH-induced DA increase. Furthermore, mice injected with an adeno-associated virus vector containing GFP (AAV-GFP vector) in the mPFC expressed a colocalization of GFP with DARPP-32 a medium spiny neuron (MSN) marker. Next, co-immunostaining of DARPP-32 and neuronal nitric oxide synthase (nNOS: expressed in a subtype of gamma-Aminobutyric acid (GABA interneurons) in ventral tegmental area (VTA) showed a colocalization of nNOS and DARPP-32. CONCLUSION: These results provided a proof that Shati/Nat8l attenuation of METH-induced DA increase is mediated by mGluR group II in the NAc. Moreover, immunohistochemical study showed a direct connection of mPFC projection neurons with NAc MSN and a connection of MSN projection neurons with a subtype of GABA interneurons in VTA.


Assuntos
Dopaminérgicos/farmacologia , Dopamina/metabolismo , Metanfetamina/farmacologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Acetiltransferases/metabolismo , Aminoácidos/farmacologia , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Xantenos/farmacologia
20.
Nat Commun ; 10(1): 2394, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160584

RESUMO

To understand the molecular processes that link Aß amyloidosis, tauopathy and neurodegeneration, we screened for tau-interacting proteins by immunoprecipitation/LC-MS. We identified the carboxy-terminal PDZ ligand of nNOS (CAPON) as a novel tau-binding protein. CAPON is an adaptor protein of neuronal nitric oxide synthase (nNOS), and activated by the N-methyl-D-aspartate receptor. We observed accumulation of CAPON in the hippocampal pyramidal cell layer in the AppNL-G-F -knock-in (KI) brain. To investigate the effect of CAPON accumulation on Alzheimer's disease (AD) pathogenesis, CAPON was overexpressed in the brain of AppNL-G-F mice crossbred with MAPT (human tau)-KI mice. This produced significant hippocampal atrophy and caspase3-dependent neuronal cell death in the CAPON-expressing hippocampus, suggesting that CAPON accumulation increases neurodegeneration. CAPON expression also induced significantly higher levels of phosphorylated, oligomerized and insoluble tau. In contrast, CAPON deficiency ameliorated the AD-related pathological phenotypes in tauopathy model. These findings suggest that CAPON could be a druggable AD target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Agregação Patológica de Proteínas/metabolismo , Células Piramidais/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Atrofia , Caspase 3/metabolismo , Morte Celular , Cromatografia Líquida , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Células Piramidais/patologia , Tauopatias , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA