Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Epilepsy Behav Rep ; 16: 100463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195590

RESUMO

Epileptic encephalopathy with electrical status epilepticus during sleep (ESES) is often refractory to medical treatment and leads to poor cognitive outcomes. Corpus callosotomy may be an effective treatment option for drug-resistant ESES with no focal etiology. We retrospectively identified three patients who underwent corpus callosotomy for drug-resistant ESES in our institution. Electroencephalography (EEG) findings and cognitive functions were evaluated before surgery, at 3 months, 6 months, 1 year, and 2 years after surgery. Age at surgery was 6 years 10 months, 7 years 9 months, and 8 years 4 months, respectively. Period between the diagnosis of ESES and surgery ranged from 7 to 25 months. All patients had no obvious structural abnormalities and presented with cognitive decline despite multiple antiseizure medications and steroid therapies. One patient showed complete resolution of ESES and an improvement of intelligence quotient after surgery. Epileptiform EEG was lateralized to one hemisphere after surgery and spike wave index (SWI) was decreased with moderate improvement in development and seizures in the other 2 patients. SWI re-exacerbated from 6 months after surgery, but without subsequent developmental regression in these 2 patients. Corpus callosotomy may become an important treatment option for drug-resistant ESES in patients with no structural abnormalities.

2.
Brain Sci ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671088

RESUMO

Implantation of subdural electrodes on the brain surface is still widely performed as one of the "gold standard methods" for the presurgical evaluation of epilepsy. Stereotactic insertion of depth electrodes to the brain can be added to detect brain activities in deep-seated lesions to which surface electrodes are insensitive. This study tried to clarify the efficacy and limitations of combined implantation of subdural and depth electrodes in intractable epilepsy patients. Fifty-three patients with drug-resistant epilepsy underwent combined implantation of subdural and depth electrodes for long-term intracranial electroencephalography (iEEG) before epilepsy surgery. The detectability of early ictal iEEG change (EIIC) were compared between the subdural and depth electrodes. We also examined clinical factors including resection of MRI lesion and EIIC with seizure freedom. Detectability of EIIC showed no significant difference between subdural and depth electrodes. However, the additional depth electrode was useful for detecting EIIC from apparently deep locations, such as the insula and mesial temporal structures, but not in detecting EIIC in patients with ulegyria (glial scar). Total removal of MRI lesion was associated with seizure freedom. Depth electrodes should be carefully used after consideration of the suspected etiology to avoid injudicious usage.

3.
J Neurol Surg Rep ; 81(1): e15-e19, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32257764

RESUMO

Objective Stimulation of the subthalamic nucleus by implanted electrodes (deep brain stimulation [DBS]) is performed to suppress symptoms of Parkinson's disease. However, postoperative wound dehiscence and infection can require removal of the implanted electrode leads. This report describes treatment of intractable unilateral wound infection in two patients without removing the DBS device. Methods First, components of the DBS system were removed except for the electrode lead and thorough debridement of the infected wound was conducted. Second, the edges of the bone defect left by removal of DBS components were smoothed to eliminate dead space. Subsequently, the electrode lead was covered by using a pericranial-frontalis-muscle flap or a bi-pedicled-scalp flap with good blood supply. Closed intrawound continuous negative pressure and irrigation treatment was conducted for 1 week after the surgery, and then the drain was removed. Results We treated two patients with wound infection after implantation of DBS electrodes. Case 1 developed a cutaneous fistula and Case 2 had wound dehiscence. After treatment by the method described above, complete wound healing was achieved in both patients. Conclusion DBS is always associated with a risk of infection or exposure of components and treatment can be very difficult. We successfully managed intractable wound infection while leaving the electrode lead in situ, so that it was subsequently possible to continue DBS for Parkinson's disease.

4.
J Neurosurg ; : 1-6, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653813

RESUMO

OBJECTIVE: Intractable epilepsy patients with ulegyria could be candidates for resective surgery. Complete resection of ulegyria in the epileptogenic hemisphere is associated with favorable seizure outcome, although the risk of postoperative functional deficits is higher. The authors evaluated the extent of resection and postsurgical outcomes in epilepsy patients with ulegyria who underwent intracranial electroencephalography (iEEG) monitoring prior to resection to clarify the efficacy of iEEG-guided partial resection of ulegyria. METHODS: Ten consecutive epilepsy patients with ulegyria (7 males and 3 females, age range at surgery 7-34 years) underwent iEEG prior to resective surgery between 2011 and 2017 with a minimum follow-up of 12 months (range 12-72 months). The diagnosis of ulegyria was based on the typical pattern of cortical atrophy especially at the bottom of the sulcus on MRI. An iEEG study was indicated after comprehensive preoperative evaluations, including high-field MRI, long-term video-EEG, magnetoencephalography, and FDG-PET. The resection planning was based on iEEG analysis. Total lesionectomy was not always performed, as preservation of cortical function was prioritized. RESULTS: Ulegyria was seen in the occipital and/or parietal lobe in 9 patients and bilaterally in 5 patients. Ictal EEG onset involved the temporal neocortex in 6 patients. Intracranial electrodes were implanted unilaterally in all except 1 patient with bilateral lesions. The extent of MRI lesion was covered by the electrodes. Seizure onset zones (SOZs) and irritative zones (IZs) were identified in all patients. SOZs and IZs were completely resected in 8 patients but were only partially removed in the remaining 2 patients because the eloquent cortices and the epileptogenic zones overlapped. Ulegyria of the epileptogenic side was totally resected in 1 patient. Seizure freedom was achieved in 4 patients, including 3 after partial lesionectomy. Extended resection of the temporal neocortex was performed in 4 patients, although postoperative seizure freedom was achieved only in 1 of these patients. Visual field deficit was seen in 4 patients. Three of 5 patients with bilateral lesions achieved seizure freedom after unilateral resective surgery. CONCLUSIONS: Intracranial EEG-guided partial lesionectomy provides a reasonable chance of postoperative seizure freedom with a lower risk of functional deficits. Patients with bilateral ulegyria should not be excluded from consideration as surgical candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA