Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leuk Lymphoma ; 61(8): 1943-1953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32264726

RESUMO

FF-10501-01 potently inhibits inosine-5-monophosphate dehydrogenase (IMPDH), inducing anti-proliferative and pro-apoptotic effects in acute myeloid leukemia (AML) human cell lines resistant to hypomethylating agents. In this Phase 1/2a study, Phase 1 enrolled 38 patients with relapsed/refractory AML (n = 28) or myelodysplastic syndromes (MDS/CMML, n = 10) to receive FF-10501 oral doses 50-500 mg/m2 BID for 14 or 21 days out of each 28-day cycle. Fifteen additional patients with HMA-resistant MDS/CMML (Phase 2a) were treated at 400 mg/m2 BID for 21 days. Most Phase 1 adverse events were disease-related and low-grade. 3 of 19 (16%) evaluable AML patients achieved partial remission (31, 7, and 5 months). 2 of 20 (10%) evaluable MDS/CMML patients (Phase 1 and 2a) attained marrow complete remission, one continuing treatment for 17 months. While FF-10501-01 demonstrated clinical activity and target inhibition in heavily pretreated patients with AML and MDS/CMML, increased mucositis events led to Phase 2a closure (ClinTrials.gov#NCT02193958).


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Inibidores Enzimáticos/efeitos adversos , Humanos , IMP Desidrogenase , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico
2.
Leuk Lymphoma ; 59(2): 448-459, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28730859

RESUMO

One of the major symptoms of myelodysplastic syndromes (MDS) is severe cytopenia. Despite cytokine therapies, such as erythropoiesis-stimulating agents, many patients still require blood transfusions, and the development of new therapeutic approaches is needed. In this work, we studied the effects of the inosine-5'-monophosphate (IMP) dehydrogenase (IMPDH) inhibitor FF-10501 on erythropoiesis of human hematopoietic cells. Differentiation of K562 chronic myeloid leukemia cells to an erythroid lineage was promoted by FF-10501 in a dose-dependent manner. Interestingly, we found that metabolic conversion of IMP to hypoxanthine leads to elevation of reactive oxygen species (ROS). The differentiative effects of FF-10501 were abolished by the ROS scavenger dimethylthiourea or the p38 MAPK inhibitor SB203580. Furthermore, FF-10501 promoted erythropoiesis from CD34+ hematopoietic stem/progenitor cells, accompanied with ROS accumulation, while high-dose FF-10501 mainly showed cytotoxic effects. These findings denote the potential of IMPDH inhibition therapy with FF-10501 in amelioration of anemia in MDS patients.


Assuntos
Inibidores Enzimáticos/farmacologia , Eritropoese/efeitos dos fármacos , IMP Desidrogenase/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Estudos de Casos e Controles , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Síndromes Mielodisplásicas , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia
3.
Pharmacol Res Perspect ; 4(1): e00206, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26977297

RESUMO

Resistance to azacitidine is a major issue in the treatments of myelodysplastic syndrome and acute myeloid leukemia, and previous studies suggest that changes in drug metabolism are involved in the resistance. Therefore, drugs with mechanisms resistant or alternative to such metabolic changes have been desired for the treatment of resistant disease. We generated azacitidine-resistant cells derived from SKM-1 and MOLM-13 leukemia cell lines in vitro, analyzed the mechanisms, and examined the impact on the efficacy of other antimetabolic drugs. It appeared that the cell growth-inhibitory effect of azacitidine, expression levels of uridine-cytidine kinase 2, and the concentrations of azacitidine triphosphate were remarkably decreased in the resistant cells compared with those in parent cells. These results were consistent with previous observations that azacitidine resistance is derived from metabolic changes. Cross-resistance of greater than 10-fold (shift in IC50 value) was observed in azacitidine-resistant cells for decitabine and for cytarabine, but not for gemcitabine or the inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors FF-10501 and mycophenolate mofetil (cross-resistance to 5-fluorouracil was cell line dependent). The IMPDH inhibitors maintained their cell growth-inhibitory activities in the azacitidine-resistant cell lines, in which the levels of adenine phosphoribosyltransferase (which converts FF-10501 to its active form, FF-10501 ribosylmonophosphate [FF-10501RMP]), FF-10501RMP, and the target enzyme, IMPDH, were equivalent to those in the parent cell lines. These results suggest that an IMPDH inhibitor such as FF-10501 could be an alternative therapeutic treatment for leukemia patients with acquired resistance to azacitidine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA